SOIL DEGRADATION ASSESSMENT IN SELECTED LAND-USE TYPES OF KANO STATE, NIGERIA

Authors

  • H.A. YAU
  • M.J MAGAJI
  • A.G. MUSA
  • A.M. ZAKARIYYA
  • M.S. YUSIF
  • Z.A. YAU

DOI:

https://doi.org/10.33003/jaat.2025.1101.18

Keywords:

Land use,, Nutrient depletion,, Soil degradation,, Sustainable management

Abstract

This study assessed the status of soil degradation across three prevalent land uses: farmland, grazing land, and tree plantations in Kumbotso Local Government Area, Kano State, where a total of eighteen (18) samples (six per land use) using simple random soil sampling methods were collected within the depths of 0-20 cm and composites of two samples for each land use were made and tested for physical (bulk density, texture) and chemical (N, P, K, ESP, BSP, EC, OM) properties. The laboratory results obtained were compared with the standard indicators and criteria for land degradation assessment according to FAO, 1979. The results revealed varying degrees of degradation; physical degradation was evident with tree plantations and grazing lands exhibiting higher bulk density (1.4–1.7 g cm⁻³). Most soils textureof the area were sandy (>85% sand), though some farmlands showed improved silt content (120–130 g kg⁻¹). Chemical degradation was discerned with low P (6.16–51.9 mg kg⁻¹), N (0.1–0.19%), and K (0.33–0.43 cmol/kg) respectively, organic matter depletion (0.58–1.91%) and BS below (1%) signifying very high degradation were observed, while some sites have shown high ESP (up to 31%). EC values in all the sites are within the standard (< 2 dS/m). From the findings, the comparison of the status of the soil's physical and chemical properties with the FAO standard shows that the area is undergoing degradation. Therefore, sustainable land management strategies, including rotational grazing, organic amendments, gypsum application, and agroforestry, were recommended to enhance the soil structure and fertility of the study area. Additionally, policy interventions for promoting soil conservation and farmer education are also needed to combat ongoing degradation and ensure long-term agricultural productivity.

References

Abosede, E., Mary, F., & Olakunle, O. (2015). Assessment of Degradation Status of Soils in Selected Areas of Ogbomoso, Oyo State, Nigeria. International Letters of Chemistry, Physics and Astronomy Vol. 59, pp 17-25 doi:10.18052/www.scipress.com/ILCPA.59.17

Ahad, T., Kanth, T. A., & Nabi, S. (2015). Soil Bulk Density as Related to Texture, Organic Matter Content and Porosity in Kandi Soils of District Kupwara (Kashmir Valley), India. International Journal of Scientific Research, 4(1), 213–216. https://www.worldwidejournals.com/international-journal-of-scientific-research-(IJSR)/recent_issues_pdf/2015/January/January_2015_1421747960__54.pdf

Annappa N. N., A. N., Murthy, R. K., N, Bhavya, K, G., Kumar, U., & N, S. (2024). Soil Phosphorus Distribution across Diverse Land Use Systems: A Comprehensive Review. Journal of Scientific Research and Reports. https://doi.org/10.9734/jsrr/2024/v30i62050

Badapalli, P. K., Babu, K. R., & Pujari, P. S. (2023). Land Degradation and Desertification (pp. 13–49). Springer Nature. https://doi.org/10.1007/978-981-99-6729-2_2

Bhardwaj, K. K. R., Raj, D., Devi, S., Dahiya, G. S., Sharma, S., & Sharma, B. K. (2022). Effect of Tree Leaf Litterfall on available Nutrients and Organic Carbon Pools of Soil. Research Journal of Science and Technology, 226–232. https://doi.org/10.52711/2349-2988.2022.00037

Bogunović, I., Kljak, K., Dugan, I., Grbeša, D., Telak, L. J., Duvnjak, M., Kisić, I., Kapović Solomun, M., & Pereira, P. (2022). Grassland Management Impact on Soil Degradation and Herbage Nutritional Value in a Temperate Humid Environment. Agriculture, 12(7), 921. https://doi.org/10.3390/agriculture12070921

Bray, R. H. & Kurtz, L. T. (1945). Determination of total organic and available forms of Phosphorus in soils. Soil Science 59: 39 – 45.

Bremner, J. M. & Mulvaney, C. S. (1982). Total Nitrogen: Methods of Soil Analysis Part 2. Madison, Wisconsin, USA: American Society of Agronomy, Inc. pp. 891 – 901.

Brewer, M., Kanissery, R., Strauss, S. L., & Kadyampakeni, D. M. (2023). Impact of Cover Cropping on Temporal Nutrient Distribution and Availability in the Soil. Horticulturae. https://doi.org/10.3390/horticulturae9101160

Byrnes, R. C., Eastburn, D. J., Tate, K. W., & Roche, L. M. (2018). A Global Meta-Analysis of Grazing Impacts on Soil Health Indicators. Journal of Environmental Quality, 47(4), 758–765. https://doi.org/10.2134/JEQ2017.08.0313

Chakravarthy A, and Sridhara S. (2016). Economic and ecological significance of arthropods in diversified ecosystems: sustaining regulatory mechanisms. Berlin, Germany: Springer; 2016.

Danhassan A. A, Abdullahi A. R, Abdullahi A. F, Ado M. A, Ibrahim G, Abubakar Y, Muhammad I. D (2024). Assessment of Land Use Changes Using Remote Sensing and Geographic Information System (GIS) in Kumbotso Local Government Area, Kano State. International Journal of Research Publication and Reviews, Vol 5, no 6, pp 6458-6465 June 2024. DOI: https://doi.org/10.55248/gengpi.5.0624.1635

Edrisi, S. A., Sarkar, P. S., Son, J., Prakash, N. T., & Baral, H. (2022). Assessing the Realization of Global Land Restoration: A Meta-analysis. Anthropocene Science, 1(1), 179–194. https://doi.org/10.1007/s44177-022-00018-0

FAO (1979). A framework for land evaluation. Soil resource development and conservation service: land and water development division, Rome, Italy.

Gee, G.N. and Bouder, J.W. (1986). Particle size distribution In: Klute, A., Ed., methods of soil analysis part 1. Physical and mineralogical methods 2nd edition, Agronomy society of America/ soil science society of America, Madison, Wisconsin, 383-411.

Grossman R.B., Reinsch T.G. (2002). Bulk density and linear extensibility. In Methods of soil analysis. Part 4—physical methods. Book Ser. Vol. 5. Edited by Dane J.H., Topp G.C. Soil Science Society of America, Madison, WI. pp. 201–228.

Handayani, I. P., & Hale, C. C. (2022). Healthy Soils for Productivity and Sustainable Development in Agriculture. IOP Conference Series: Earth and Environmental Science, 1018(1), 012038. https://doi.org/10.1088/1755-1315/1018/1/012038

Hendricks, T., Franklin, D., Dahal, S., Hancock, D. W., Stewart, L., Cabrera, M. L., & Hawkins, G. (2019). Soil carbon and bulk density distribution within 10 Southern Piedmont grazing systems. Journal of Soil and Water Conservation, 74(4), 323–333. https://doi.org/10.2489/JSWC.74.4.323

Huang, H., Li, X., Wang, S., & Liu, G. (2020). Evaluating land use dynamics and landscape fragmentation in the Horqin Sandy Land, China. Land Degradation & Development, 31(13), 1614-1626.

Kahsay, A., Haile, M., Gebresamuel, G., & Mohammed, M. S. K. (2023). Assessing land use type impacts on soil quality: Application of multivariate statistical and expert opinion-followed indicator screening approaches. Catena, 231, 107351. https://doi.org/10.1016/j.catena.2023.107351

Kvakić, M., Kvakić, M., Pellerin, S., Ciais, P., Achat, D. L., Augusto, L., Denoroy, P., Gerber, J. S., Goll, D. S., Mollier, A., Mueller, N. D., Wang, X., & Ringeval, B. (2018). Quantifying the Limitation to World Cereal Production Due To Soil Phosphorus Status. Global Biogeochemical Cycles, 32(1), 143–157. https://doi.org/10.1002/2017GB005754

Lai, L., & Kumar, S. (2020). A global meta-analysis of livestock grazing impacts on soil properties. PLOS ONE, 15(8), 1–17. https://doi.org/10.1371/JOURNAL.PONE.0236638

Laudicina, V. A., Ruisi, P., & Badalucco, L. (2023). Soil Quality and Crop Nutrition. Agriculture. https://doi.org/10.3390/agriculture13071412

Lema, B., Mesfin, S., Kebede, F., Abraha, Z., Fitiwy, I., & Haileselassie, H. (2019). Evaluation of soil physical properties of long-used cultivated lands as a deriving indicator of soil degradation, north Ethiopia. Physical Geography, 40(4), 323–338. https://doi.org/10.1080/02723646.2019.1568148

Liu, R., Pan, Y., Bao, H., Liang, S., Jiang, Y., Tu, H., Nong, J., & Huang, W. (2020). Variations in Soil Physico-Chemical Properties along Slope Position Gradient in Secondary Vegetation of the Hilly Region, Guilin, Southwest China. Sustainability, 12(4), 1303. https://doi.org/10.3390/su12041303

Molua, C. O. (2021). Investigating the Influence of Soil Electrical Conductivity on Crop Yield for Precision Agriculture Advancements. International Journal of Agriculture and Animal Production, 12, 23–34. https://doi.org/10.55529/ijaap.12.23.34

Musa, O. I., Samuel, J., Adams, M. V., Abdulsalam, M., Nathaniel, V., Maude, A. M., Adedayo, O. J., & Tiamiyu, A. T. (2024). Soil Erosion, Mineral Depletion and Regeneration (pp. 159–172). Springer International Publishing. https://doi.org/10.1007/978-3-031-53270-2_7

Nelson, D.W. and Sommer, L.E. (1982) Total Carbon, Organic Carbon and Organic Matter. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd Edition. ASA-SSSA, Madison, 595-579.

NPC, (2006). Population of Kano State; Retrieved from www.npc.org.ng, Population Census of Nigeria. NPC, Abuja. (Accessed 10 March, 2024).

Osman, K. T. (2018). Saline and Sodic Soils (pp. 255–298). Springer, Cham. https://doi.org/10.1007/978-3-319-75527-4_10

Oviedo-Celis, R. A., Hernández Gamboa, C., Pascual, J. A., & Ros, M. (2024). Conceptual and practical challenges of assessing soil quality. Soil Use and Management, 40(4). https://doi.org/10.1111/sum.13137

Pandey, V., Labanya, R., & Kumar, D. (2024). Soil quality and agroforestry (pp. 121–138). https://doi.org/10.58532/v3bcag18p4ch4

Qiang, J., Peñuelas, J., Sardans, J., Romero, E., Chen, S., Xuyang, L., Shaoying, L., & Wang, W. (2021). Changes in soil carbon, nitrogen, and phosphorus contents, storages, and stoichiometry during land degradation in jasmine croplands in subtropical China. Experimental Agriculture, 57(2), 113–125. https://doi.org/10.1017/S0014479721000089

Richards, L.A., (1954). Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, Washington, DC.

Rosas Jorge Tadeu Fim, José A.M. Demattê, Nícolas Augusto Rosin, Raul Roberto Poppiel, Nélida E.Q. Silvero, Merilyn Taynara Accorsi Amorim, Heidy S. Rodríguez-Albarracín, Letícia Guadagnin Vogel, Bruno dos Anjos Bartsch, José João Lelis Leal de Souza, Lucas de Carvalho Gomes, and Danilo César de Mello. (2025) Mapping clay fraction oxides in Brazil using Earth observation strategy, Geoderma, Volume 460, 2025, 117425, ISSN 0016-7061, https://doi.org/10.1016/j.geoderma.2025.117425

Rosas-Medina, M., Maciá-Vicente, J. G., & Piepenbring, M. (2020). Diversity of Fungi in Soils with Different Degrees of Degradation in Germany and Panama. Microbiology, 48(1), 20–28. https://doi.org/10.1080/12298093.2019.1700658

Rowell D. (2014). Soil science: methods and applications. 1st ed. Reading (UK): Department of Soil Science, University of Reading; 2014.

Roy, S., & Chowdhury, N. (2020). Salt Stress in Plants and Amelioration Strategies: A Critical Review. IntechOpen. https://doi.org/10.5772/INTECHOPEN.93552

Sani, S., Abdulkadir, A., Sani, M., & Amin, A. M. (2023). Spatial Variability and Mapping of Selected Soil Physical Properties under Continuous Cultivation. Turkish Journal of Agriculture: Food Science and Technology, 11(4), 719–729. https://doi.org/10.24925/turjaf.v11i4.719-729.5733

Saturday, A. (2018). Restoration of Degraded Agricultural Land: A Review. Journal of Environment and Health Science 4(2): 44- 51. DOI: 10.15436/2378-6841.18.1928

Shilewant, S. S., Patil, V. D., & Gourkhede, P. H. (2020). Taxonomic Classification, Characterization and Mapping of BSP Farm of Parbhani for Rational Land Use Planning. International Journal of Current Microbiology and Applied Sciences, 9(4), 2808–2826. https://doi.org/10.20546/IJCMAS.2020.904.330

Siles J, Margesin R. (2016). Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors? Microb Ecol. 2016; 72(1): 207–220.

Silvero, N.E.Q., Demattˆe, J.A.M., Minasny, B., Rosin, N.A., Nascimento, J.G., RodríguezAlbarracín, H.S., Bellinaso, Gomez, ´ A.M.R. (2023). Sensing technologies for characterizing and monitoring soil functions: A review. Chapter three. In: Advances in Agronomy, Volume 177. Pages 125-168. ISSN0065-2113. https://doi.org/10.1016/bs.agron.2022.08.002

Sumner, M.E. and Miller, W.P. (1996) Cation Exchange Capacity and Exchange Coefficients. In: Sparks, D.L., and Ed., Methods of Soil Analysis Part 3: Chemical Methods, SSSA Book Series 5, and Soil Science Society of America, Madison, Wisconsin, and 1201-1230.

Thomas, G. W., (1982). Exchangeable Cations. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, Second Edition. A.L. Page (editor). Agronomy, No. 9, Part 2, American Society of Agronomy, Soil Science Society of America, Madison, Wl: 159-165.

Wang, Q. A., Wang, W., Wang, W., He, X., Zheng, Q., Wang, H., Wu, Y., & Zhong, Z. (2017). Changes in soil properties, X-ray-mineral diffractions and infrared-functional groups in bulk soil and fractions following afforestation of farmland, Northeast China. Scientific Reports, 7(1), 12829. https://doi.org/10.1038/S41598-017-12809-2

Xiao, X., Li, L., & Li, M. (2020). Analysis of land use change and its driving forces in Xuzhou city using remote sensing and GIS. Remote Sensing, 12(20), 3333.

Xu, N., Bhadha, J. H., Rabbany, A., & Swanson, S. (2019). Soil Health Assessment of Two Regenerative Farming Practices on Sandy Soils. Sustainable Agriculture Research, 8(4), 61. https://doi.org/10.5539/SAR.V8N4P61

Ye, C., Zheng, G., Tao, Y., Xu, Y., Chu, G., Xu, C., Chen, S., Liu, Y., Zhang, X., & Wang, D. (2024). Effect of Soil Texture on Soil Nutrient Status and Rice Nutrient Absorption in Paddy Soils. Agronomy, 14(6), 1339. https://doi.org/10.3390/agronomy14061339

Zhong, J., Pan, P., Xiao, S., & Ouyang, X. (2022). Influence of Eucalyptus Plantation on Soil Organic Carbon and Its Fractions in Severely Degraded Soil in Leizhou Peninsula, China. Forests, 13(10), 1606. https://doi.org/10.3390/f13101606

Zhu, M., Zhang, X., Guo, Y., Wu, Y., Wang, Q. A., Wang, H., & Wang, W. (2023). Shelterbelts increased soil inorganic carbon but decreased nitrate nitrogen, total phosphorus, and bulk density relative to neighbour farmlands depending on tree growth, geo climate, and soil microbes in the Northeast China Plain. Catena, 231, 107344. https://doi.org/10.1016/j.catena.2023.107344

Downloads

Published

2025-09-27