NUTRIENT RECYCLING AS A PROMOTER OF SOIL HEALTH MANAGEMENT: A REVIEW

Authors

  • Abubakar Suleiman Ali Department of Soil Science, Faculty of Agriculture, Federal University Dutsin-Ma, Katsina State, Nigeria

DOI:

https://doi.org/10.33003/jaat.2025.1102.005

Abstract

Soil health is a fundamental component of sustainable agriculture, affecting both productivity and environmental quality. One of the key factors in maintaining soil health is nutrient recycling, a process where nutrients are reused within the ecosystem to maintain fertility and structure. This literature review explores the significance of nutrient recycling in soil health management, discussing its role in preventing soil degradation, improving agricultural productivity, and ensuring sustainability. Key nutrient cycles, challenges in nutrient management, and current techniques to enhance nutrient recycling are examined. This review provides insight into the growing importance of nutrient recycling practices for ensuring long-term soil health and agricultural sustainability.

References

Aasfar, A., Yaakoubi, K., Tahiri, A., & Merzouki, M. (2021). Nutrient recycling: A review on the valorization of food waste through anaerobic digestion processes. Environmental Technology & Innovation, 21, 101200. https://doi.org/10.1016/j.eti.2020.101200

Alemu, H., Behere, G. T., and Abebe, T. (2016). Impact of organic amendments on soil fertility and microbial community in tropical agroecosystems: A review. Agriculture, Ecosystems and Environment, 216, 66-73. https://doi.org/10.1016/j.agee.2015.10.017

Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A. Y., Gattinger, A., Keller, T., Charles, R., & van der Heijden, M. G. A. (2024). Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in soils. ISME Journal, 18(1), 45–58. https://doi.org/10.1038/s41396-023-01500-2

Bargali, S. S. (2024). Soil microbial biomass: A crucial indicator of soil health. Current Agriculture Research Journal, 12(1): 49 - 61. http://dx.doi.org/10.12944/CARJ.12.1.01

Belete, F., Tudi, M., & Wang, L. (2024). Negative impacts of intensive agricultural practices on environment and soil health. Agronomy Journals, 7(12), 34–45. https://www.agronomyjournals.com/article/view/2146/7-12-34

Bender, S. F., Wagg, C., and van der Heijden, M. G. A. (2016). An underground revolution: Soil biodiversity and soil ecosystem services in the face of global change. Trends in Ecology and Evolution, 31(6): 440-452. https://doi.org/10.1016/j.tree.2016.03.003

Bhattacharyya, P. N., and Jha, D. K. (2016). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4): 1327–1350. https://doi.org/10.1007/s11274-011-0979-9

Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., and Brussaard, L. (2018). Soil quality–A critical review. Soil Biology and Biochemistry, 120: 105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

Celik, I., Gunal, H., Budak, M., and Akpinar, C. (2019). Effects of different tillage systems and organic matter applications on microbial biomass and enzyme activity in soils. Sustainability, 11(3), 724. https://doi.org/10.3390/su11030724

Cordeiro, C. M., & Sindhøj, E. (2024). Situating the discourse of recycled nutrient fertilizers in circular economy principles for sustainable agriculture. Frontiers in Sustainability, 5, Article 1465752. https://doi.org/10.3389/frsus.2024.1465752

FAO. (2005). Improving plant nutrient management for better farmer livelihoods, food security, and environmental sustainability. Food and Agriculture Organization of the United Nations. https://www.fao.org/4/ag120e/AG120E19.htm

FAO. (2015). Status of the World’s Soil Resources: Main report. Food and Agriculture Organization of the United Nations. https://www.fao.org/documents/card/en/c/cc4777en

FAO. (2017). The future of food and agriculture – Trends and challenges. Food and Agriculture Organization of the United Nations. https://www.fao.org/publications

Finney, D. M., Kaye, J. P., and Hedtcke, J. L. (2016). Long-term cover cropping impacts on soil health in an organic maize cropping system. Agronomy Journal, 108(1):105-116. https://doi.org/10.2134/agronj2015.0364

Franke, A. C., van den Brand, G. J., Vanlauwe, B., and Giller, K. E. (2014). Sustainable intensification through rotations with grain legumes in sub-Saharan Africa: A review. Agriculture, Ecosystems and Environment, 193:98–123. https://doi.org/10.1016/j.agee.2014.04.009

Frouz, J., Livečková, M., Albrechtová, J., Chroňáková, A., Cajthaml, T., Pižl, V., Háněl, L., Starý, J., Baldrian, P., Lhotáková, Z., Šimáčková, H., & Cepáková, Š. (2023). Soil biota and ecosystem services in organic versus conventional farming systems: A meta-analysis. Soil Biology and Biochemistry, 176, 108878. https://doi.org/10.1016/j.soilbio.2022.108878

Girkin, N. T., and Cooper, H. V. (2023). Nitrogen mineralization and immobilization. In Encyclopedia of Soils in the Environment (2nd ed.). Elsevier. https://doi.org/10.1016/B978-0-12-822974-3.00010-0

Hobbs, P. R., Sayre, K., and Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491):543–555. https://doi.org/10.1098/rstb.2007.2169

Jaiswal, S. K., Naamala, J., & Dakora, F. D. (2022). Microbes as biofertilizers: A novel approach for plant nutrition and soil health. Applied Microbiology and Biotechnology, 106(3), 1139–1154. https://doi.org/10.1007/s00253-021-11767-2

Kallenbach, C. M., Frey, S. D., & Grandy, A. S. (2021). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 12(1), 4521. https://doi.org/10.1038/s41467-021-24582-y

Kremen, C., and Miles, A. (2012). Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecology and Society, 17(4). https://doi.org/10.5751/ES-05035-170440

Lakhani, H., et al. (2025). Enhancing soil fertility through microbial activity, bio-inputs, and natural farming practices. International Journal of Current Microbiology and Applied Sciences, 14(3). Retrieved from https://www.ijcmas.com/14-3-2025/Hardik%20Lakhani%2C%20et%20al.pdf

Lehmann, J., Bossio, D. A., Kögel-Knabner, I., & Rillig, M. C. (2020). The concept and future prospects of soil health. Nature Reviews Earth & Environment, 1(10), 544–553. https://doi.org/10.1038/s43017-020-0080-8

Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., Nunan, N., Reichstein, M., Schimel, J. P., Torn, M. S., Wieder, W. R., & Kögel-Knabner, I. (2022). Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 15(8), 628–634. https://doi.org/10.1038/s41561-022-00989-0

Li, Y., Wang, Y., & Zhang, X. (2024a). Conservation tillage facilitates the accumulation of soil organic carbon fractions by affecting the microbial community in an eolian sandy soil. Frontiers in Microbiology, 15, Article 11176501. https://doi.org/10.3389/fmicb.2024.11176501

Li, Y., Wang, Y., & Zhang, X. (2024b). Crop rotation and diversification in China: Enhancing sustainable agriculture. Agriculture, 14(9), 1465. https://doi.org/10.3390/agriculture14091465

Li, Y., Wang, Y., & Zhang, X. (2024c). Polyculture systems and their role in sustainable agriculture: Enhancing nutrient utilization and reducing synthetic fertilizer dependence. Journal of Sustainable Agriculture, 14(3), 145–158. https://doi.org/10.1016/j.susag.2024.03.005

Li, Y., Wang, Y., & Zhang, X. (2024d). Long-term conservation tillage results in a more balanced soil microbiological activity and higher nutrient supply capacity. Journal of Soil Science and Plant Nutrition, 24(2), 123–135. https://doi.org/10.1016/j.jsspn.2024.01.005

Loam B. (2023). Microbial technologies for carbon removal and soil health. https://www.loambio.com

Sani, M., Ibraheem, A., Sani, S., Abdulkadir, A., Hassan, I., Musa, Z., & Ibrahim, M. (2024). Primary nutrients status of three vermicomposts produced in a Nigerian Sahel region. Bulgarian Journal of Soil Science, 9(1). www.bjss.bg

Sani, M., Ahmad, B. A., & Sani, S. (2022). Effects of manure types on the emergence and seedlings growth of amaranths in a Sahelian savanna region of Nigeria. Iconic Research and Engineering Journals, 5(9), 563–570.

Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., and Grace, P. (2014). Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems & Environment, 187, 87–105. https://doi.org/10.1016/j.agee.2013.10.010

Paravar, A., & Wu, Q. S. (2024). Is a combination of arbuscular mycorrhizal fungi more beneficial to enhance drought tolerance than single arbuscular mycorrhizal fungus in Lallemantia species? Environmental and Experimental Botany, 226, 105853. https://doi.org/10.1016/j.envexpbot.2023.105853

Paul, J., Choudhary, A. K., Suri, V. K., Sharma, A. K., Kumar, V., and Shobhna. (2014). Bioresource nutrient recycling and its relationship with biofertility indicators of soil health and nutrient dynamics in rice–wheat cropping system. AGRIS. https://agris.fao.org/search/en/providers/122535/records/65df8cd8b766d82b18025035

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith, P. (2016). Climate-smart soils. Nature, 532(7597):49–57. https://doi.org/10.1038/nature17174

Pretty, J., Toulmin, C., and Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1):5–24. https://doi.org/10.3763/ijas.2010.0583

Rahmadani, E., Heryadi, D. Y., Parandy, L. M., Raden, I., & Dahliana, A. B. (2024). Sustainable intensification of smallholder farming systems. Global International Journal of InnovativeResearch,2(8).https://www.researchgate.net/publication/385276561_Sustainable_Intensification_of_Smallholder_Farming_Systems

Rumpel, C., Amiraslani, F., Chenu, C., Garcia Cardenas, M., Kaonga, M., Koutika, L. S., Ladha, J. K., Madari, B., Shirato, Y., Smith, P., Soudi, B., & Chen, S. (2022). The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio, 51(3), 661–674. https://doi.org/10.1007/s13280-021-01562-6

S. Sani, S.A. Pantami, and M. Sani (2019). Evaluation of Soil Physical properties at Jibia Irrigation Project, Katsina State, Nigeria. Fudma Journal of Agriculture and Agricultural Technology, 5(1): 231- 243.

Schröder, J. J., Schulte, R. P. O., Creamer, R. E., Delgado, A., van Leeuwen, J., Lehtinen, T., Rutgers, M., Spiegel, H., Staes, J., Toth, G., and Wall, D. P. (2016). The elusive role of soil quality in nutrient cycling: A review. Soil Use and Management, 32(1), 1–14. https://doi.org/10.1111/sum.12288

Sessitsch, A., Brader, G., Pfaffenbichler, N., Gusenbauer, D., and Mitter, B. (2019). The role of plant-associated bacteria in the mobilization and phytoavailability of soil nutrients. Microorganisms, 7(11): 475-482. https://doi.org/10.3390/microorganisms7110475

Singh, B. K. (2023). Soil salinity and its impact on microbial diversity and nutrient cycling. Soil Biology and Biochemistry, 177, 108907. https://doi.org/10.1016/j.soilbio.2022.108907

Small, E. S., Chapman, S. K., & Rillig, M. C. (2024). Soil microbial activity profiles associated with organic compost amendments in urban agriculture. Urban Agriculture & Regional Food Systems, 9(1), e20059. https://doi.org/10.1002/uar2.20059

Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R., and Kanyama-Phiri, G. Y. (2010). Biodiversity can support a greener revolution in Africa. Proceedings of the National Academy of Sciences, 107(48): 20840–20845. https://doi.org/10.1073/pnas.1007199107

Sumberg, J., Thompson, J., and Woodhouse, P. (2013). Why agronomy in the developing world has become contentious. Agronomy for Sustainable Development, 33:695–707. https://doi.org/10.1007/s13593-013-0130-4

Thakur, M. P., Phillips, H. R. P., Brose, U., De Vries, F. T., Lavelle, P., Loreau, M., Mathieu, J., Mulder, C., van der Putten, W. H., Rillig, M. C., Wardle, D. A., Bach, E. M., Bartz, M. L. C., Bennett, J. M., Briones, M. J. I., Brown, G., Decaëns, T., Eisenhauer, N., Ferlian, O., … Cameron, E. K. (2023). Toward an integrative understanding of soil biodiversity. Biological Reviews, 98(1), 1–20. https://doi.org/10.1111/brv.12898

Udvardi, M., Murray, J. D., & Sprent, J. I. (2024). Enhancing biological nitrogen fixation for sustainable agriculture. Nature Reviews Microbiology, 22(1), 45–60. https://doi.org/10.1038/s41579-023-00998-4

USDA NRCS. (2024). Soil health assessment. Natural Resources Conservation Service. https://www.nrcs.usda.gov/conservation-basics/natural-resource-concerns/soils/soil-health/soil-health-assessment

van der Wiel, M., Callesen, I., & Smith, P. (2024). Situating the discourse of recycled nutrient fertilizers in circular agriculture. Frontiers in Sustainability, 5, Article 1465752. https://www.frontiersin.org/journals/sustainability/articles/10.3389/frsus.2024.1465752/full

Vanlauwe, B., Coyne, D., Gockowski, J., Hauser, S., Huising, J., Masso, C., and Van Asten, P. (2015a). Sustainable intensification and the African smallholder farmer. Current Opinion in Environmental Sustainability, 8:15–22. https://doi.org/10.1016/j.cosust.2014.07.002

Vanlauwe, B., Wendt, J., and Giller, K. E. (2015b). A fourth principle is required to define Conservation Agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crops Research, 155:10–13. https://doi.org/10.1016/j.fcr.2013.10.002

Wang, Y., Li, X., & Zhang, H. (2024). Soil organic carbon stabilization is influenced by microbial diversity and composition. Scientific Reports, 14, Article 98009. https://doi.org/10.1038/s41598-025-98009-9

Wanjari, R. H., Prasad, R., & Nagwanshi, A. (2024). Agroforestry for nutrient cycling and soil health improvement. Indian Society of Agroforestry. https://www.researchgate.net/publication/386555002_Agroforestry_for_Nutrient_Cycling_and_Soil_Health_Improvement

Wei, X., Xie, B., Wan, C., Song, R., Zhong, W., Xin, S., & Song, K. (2024). Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices. Agronomy, 14(3), 609. https://doi.org/10.3390/agronomy14030609

Zama, S. and Lungelo, L. (2023). Sustainable Soil Management Techniques for Enhancing Agricultural Productivity. Advances in Agriculture and Agricultural Sciences, 9 (5): 001-006

Zhan, C. Y. (2024). Microbial decomposition and soil health: Mechanisms and ecological implications. Molecular Soil Biology, 15(2), 59–70. https://doi.org/10.5376/msb.2024.15.0007

Zhang, N., Wang, M., and Wang, N. (2002). Precision agriculture. A worldwide overview. Computers and Electronics in Agriculture, 36(2–3):113–132.

Zhang, Y., Li, X., & Chen, H. (2024). Enhancing soil fertility through leguminous green manures: A sustainable approach to nitrogen management. Journal of Sustainable Agriculture, 12(3), 145–158. https://doi.org/10.1016/j.susag.2024.03.005

Zhang, Y., Li, X., & Chen, H. (2024a). Long-term impacts of chemical fertilizers on soil acidification and microbial dynamics. Journal of Soil Science and Plant Nutrition, 24(2), 123–135. https://doi.org/10.1016/j.jsspn.2024.01.005

Zhang, Y., Li, X., & Chen, H. (2024b). Enhancing nutrient management through precision agriculture: A review of variable rate technology applications. Journal of Precision Agriculture, 25(3), 123–135. https://doi.org/10.1007/s11119-024-09765-4

Zhou, J., Zang, H., Loeppmann, S., Gube, M., Kuzyakov, Y., & Pausch, J. (2023). Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. New Phytologist, 237(1), 64–79. https://doi.org/10.1111/nph.18515

Downloads

Published

2025-08-04