ANTIOXIDANT EFFECT OF LYCOPENE ON IN VITRO MATURATION AND FERTILIZATION OF BOVINE OOCYTES

Authors

  • S. SIDI Usmanu Danfodiyo University, Sokoto
  • G. RESIDEWATI

DOI:

https://doi.org/10.33003/jaat.2024.1004.08.386

Keywords:

Antioxidant,, Lycopene,, maturation and, oocytes

Abstract

In vitro embryo production (IVEP) is a vital assisted-reproductive technology with significant applications in producing genetically superior animals through in vitro maturation (IVM), fertilisation (IVF) and culture of zygote. This study evaluated the antioxidant potential of lycopene during in vitro maturation (IVM) and fertilisation (IVF) of bovine oocytes. Fifty ovaries from Belgian Blue cows were collected from a slaughterhouse in Moeskroen, Belgium, and transported to the laboratory. Cumulus-oocyte complexes were aspirated from follicles (4–8 mm diameter) and incubated in modified bicarbonate-buffered TCM-199 with supplements (50 µg/mL gentamycin and 20 ng/mL epidermal growth factor) at 38.5°C in 5% CO₂ for 22 hours. Four experimental groups were established: control (C), lycopene (supplemented with 0.2 µM lycopene), menadione (supplemented with 5 µM menadione), and lycopene plus menadione (L+M), each with 40 oocytes. Following maturation, oocytes were fertilized in media containing BSA and heparin with diluted sperm, co-incubated at 38.5°C in 5% CO₂ for 21 hours. Maturation and fertilisation were assessed under a fluorescent microscope after staining with Hoechst solution. The results showed that oocytes in the lycopene group (L) achieved significantly higher maturation (86.66 ± 5.09%) and fertilisation rates (84.99 ± 5.65%) compared to the other groups (p < 0.05). These findings suggest that lycopene supplementation enhances oocyte maturation and fertilisation outcomes. The study recommends incorporating lycopene into maturation media to improve IVEP efficiency in bovine reproductive technologies.

References

Asimaki, K., Vazakidou, P., van Tol, H. T. A., Oei, C. H. Y., Modder, E. A., van Duursen, M. B. M., & Gadella, B. M. (2022). Bovine In Vitro Oocyte Maturation and Embryo Production Used as a Model for Testing Endocrine Disrupting Chemicals Eliciting Female Reproductive Toxicity With Diethylstilbestrol as a Showcase Compound. Frontiers in Toxicology, 4(May), 1–19. https://doi.org/10.3389/ftox.2022.811285

Baldassarre, H. (2021). Laparoscopic ovum pick-up followed by in vitro embryo production and transfer in assisted breeding programs for ruminants. Animals, 11(1), 1–12. https://doi.org/10.3390/ani11010216

Black, H. S., Boehm, F., Edge, R., & Truscott, T. G. (2020). The benefits and risks of certain dietary carotenoids that exhibit both anti-and pro-oxidative mechanisms—A comprehensive review. Antioxidants, 9(3). https://doi.org/10.3390/antiox9030264

Bouftas, N., & Wassmann, K. (2019). Cycling through mammalian meiosis: B-type cyclins in oocytes. Cell Cycle, 18(14), 1537–1548. https://doi.org/10.1080/15384101.2019.1632139

Bury, L., Coelho, P. A., & Glover, D. M. (2016). From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development. In Current Topics in Developmental Biology (1st ed., Vol. 120). Elsevier Inc. https://doi.org/10.1016/bs.ctdb.2016.04.011

Chowdhury, M. M. R., Mesalam, A., Khan, I., Joo, M. D., Lee, K. L., Xu, L., Afrin, F., & Kong, I. K. (2018). Improved developmental competence in embryos treated with lycopene during in vitro culture system. Molecular Reproduction and Development, 85(1), 46–61. https://doi.org/10.1002/mrd.22937

da Silva Rosa, P. M., Bridi, A., de Ávila Ferronato, G., Prado, C. M., Bastos, N. M., Sangalli, J. R., Meirelles, F. V., Perecin, F., & da Silveira, J. C. (2024). Corpus luteum presence in the bovine ovary increase intrafollicular progesterone concentration: consequences in follicular cells gene expression and follicular fluid small extracellular vesicles miRNA contents. Journal of Ovarian Research, 17(1), 1–14. https://doi.org/10.1186/s13048-024-01387-3

Falchi, L., Ledda, S., & Zedda, M. T. (2022). Embryo biotechnologies in sheep: Achievements and new improvements. Reproduction in Domestic Animals, 57(S5), 22–33. https://doi.org/10.1111/rda.14127

Gardner, D. K., Meseguer, M., Rubio, C., & Treff, N. R. (2015). Diagnosis of human preimplantation embryo viability. Human Reproduction Update, 21(6), 727–747. https://doi.org/10.1093/humupd/dmu064

Ilahy, R., Tlili, I., Siddiqui, M. W., Hdider, C., & Lenucci, M. S. (2019). Inside and beyond color: Comparative overview of functional quality of tomato and watermelon fruits. Frontiers in Plant Science, 10(June), 1–26. https://doi.org/10.3389/fpls.2019.00769

Krylova, N. G., Kulahava, T. A., Cheschevik, V. T., Dremza, I. K., Semenkova, G. N., & Zavodnik, I. B. (2016). Redox regulation of mitochondrial functional activity by quinones. Acta Physiologica Hungarica, 103(4), 439–458. https://doi.org/10.1556/2060.103.2016.4.4

Leh, H. E., & Lee, L. K. (2022). Lycopene : A Potent Antioxidant for the Amelioration of Type II.

Lin, J., & Wang, L. (2021). Oxidative Stress in Oocytes and Embryo Development: Implications for in Vitro Systems. Antioxidants and Redox Signaling, 34(17), 1394–1406. https://doi.org/10.1089/ars.2020.8209

Moulavi, F., Asadi-Moghadam, B., Omidi, M., Yarmohammadi, M., Ozegovic, M., Rastegar, A., & Hosseini, S. M. (2020). Pregnancy and Calving Rates of Cloned Dromedary Camels Produced by Conventional and Handmade Cloning Techniques and In Vitro and In Vivo Matured Oocytes. Molecular Biotechnology, 62(9), 433–442. https://doi.org/10.1007/s12033-020-00262-y

Pavani, K. C., Hendrix, A., Van Den Broeck, W., Couck, L., Szymanska, K., Lin, X., De Koster, J., Van Soom, A., & Leemans, B. (2019). Isolation and characterization of functionally active extracellular vesicles from culture medium conditioned by bovine embryos in vitro. International Journal of Molecular Sciences, 20(1), 1–22. https://doi.org/10.3390/ijms20010038

Piekarski, N., Hobbs, T. R., Jacob, D., Schwartz, T., Burch, F. C., Mishler, E. C., Jensen, J. V., Krieg, S. A., & Hanna, C. B. (2023). A Comparison of Oocyte Yield between Ultrasound-Guided and Laparoscopic Oocyte Retrieval in Rhesus Macaques. Animals, 13(19). https://doi.org/10.3390/ani13193017

Robert, C. (2021). Nurturing the egg: The essential connection between cumulus cells and the oocyte. Reproduction, Fertility and Development, 34(2), 149–159. https://doi.org/10.1071/RD21282

Roy, S., Saha, S. K., & Ghorai, N. (2019). The fine structure of gametogenesis and somatic cells in the ovotestis of the terrestrial pulmonate slug, Laevicaulis alte (Férussac, 1822). Molluscan Research, 39(4), 355–372. https://doi.org/10.1080/13235818.2019.1634307

Sidi, S., Pascottini, O. B., Angel-Velez, D., Azari-Dolatabad, N., Pavani, K. C., Residiwati, G., Meese, T., Van Nieuwerburgh, F., Bawa, E. K., Voh, A. A., Ayo, J. O., & Van Soom, A. (2022). Lycopene Supplementation to Serum-Free Maturation Medium Improves In Vitro Bovine Embryo Development and Quality and Modulates Embryonic Transcriptomic Profile. Antioxidants, 11(2). https://doi.org/10.3390/antiox11020344

Supruniuk, E., Górski, J., & Chabowski, A. (2023). Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants, 12(2). https://doi.org/10.3390/antiox12020501

Vr, M., Galimberti, D., Banc, R., Drago, O., Filip, L., Stroia, C. M., & Miere, D. (2022). Plants-11-02524.Pdf.

Downloads

Published

2025-05-13