• IRABOR ARNOLD EBUKA Department of Fisheries and Aquaculture, Dennis Osadebay University, Anwai, Asaba, Delta State,Nigeria
  • SANUBI JOVITA OGHENENYERHOVWO Department of Animal Production, Dennis Osadebay University, Anwai, Asaba, Delta State, Nigeria.



Aquaculture, Catadromous, Environmental factors, Physiological factors, Smolt


Smoltification in salmonids being a complex change engineered by its endocrine is geared towards the adaptive migration from freshwater into saltwater for development is a very important aspect in its life cycle. The understanding of this phenomenal is however paramount for the ensured optimal productivity and sustainability of this unique fish species (salmonids) in culture systems. Hence this study reviewed on the basic factors that influence the smoltification process as well as the relevance of the knowledge to salmonid farming.


Anand, G., Srivastava, P.P., Varghese, T., & Gupta, S. (2022). Rearing in hypersaline inland ground saline water affect growth and osmoregulatory responses of Common carp (Linnaeus 1758).

Bernard, B., Mandiki, S.N., Duchatel, V., Rollin, X., & Kestemont, P. (2019). A temperature shift on the migratory route similarly impairs hypo-osmoregulatory capacities in two strains of Atlantic salmon (Salmo salar L.) smolts. Fish Physiology and Biochemistry, 45, 1245-1260.

Brauner, C.J., & Richards, J.G. (2020). Physiological performance in aquaculture: Using physiology to help define optimal conditions for growth and environmental tolerance. Fish physiology (Vol. 38, pp. 83-121). Academic Press.

Calabrese, S. (2017). Environmental and biological requirements of post-smolt Atlantic salmon (Salmo salar L.) in closed-containment aquaculture systems.

Charlton, K.E., Russell, J., Gorman, E., Hanich, Q., Delisle, A., Campbell, B., & Bell, J. (2016). Fish, food security and health in Pacific Island countries and territories: a systematic literature review. BMC Public Health, 16(1), 1-26.

Christensen, K.A., Rondeau, E.B., Minkley, D.R., Leong, J.S., Nugent, C.M., Danzmann, R.G., & Koop, B.F. (2018). The Arctic charr (Salvelinus alpinus) genome and transcriptome assembly. PloS one, 13(9), e0204076.

Damsgaard, C., McGrath, M., Wood, C.M., Richards, J.G., & Brauner, C.J. (2020). Ion-regulation, acid/base-balance, kidney function, and effects of hypoxia in coho salmon, Oncorhynchus kisutch, after long-term acclimation to different salinities. Aquaculture, 528, 735571.

El-Leithy, A.A., Hemeda, S.A., El Naby, W.S.A., El Nahas, A.F., Hassan, S.A., Awad, S.T., & Helmy, Z.A. (2019). Optimum salinity for Nile tilapia (Oreochromis niloticus) growth and mRNA transcripts of ion-regulation, inflammatory, stress-and immune-related genes. Fish physiology and biochemistry, 45, 1217-1232.

Ferrón, H.G., Martínez-Pérez, C., & Botella, H. (2017). Ecomorphological inferences in early vertebrates: reconstructing Dunkleosteus terrelli (Arthrodira, Placodermi) caudal fin from palaeoecological data. PeerJ, 5, e4081.

Finlay, R.W., Poole, R., Rogan, G., Dillane, E., Cotter, D., & Reed, T.E. (2021). Hyper-and hypo-osmoregulatory performance of Atlantic Salmon (Salmo salar) smolts infected with Pomphorhynchus tereticollis (Acanthocephala). Frontiers in Ecology and Evolution, 9, 689233.

Good, C., & Davidson, J. (2016). A review of factors influencing maturation of Atlantic salmon, Salmo salar, with focus on water recirculation aquaculture system environments. Journal of the World Aquaculture Society, 47(5), 605-632.

Handeland, S.O., Imsland, A.K., Nilsen, T.O., Ebbesson, L.O.E., Hosfeld, C.D., Pedrosa, C., & Stefansson, S.O. (2014). Osmoregulation in Atlantic salmon Salmo salar smolts transferred to seawater at different temperatures. Journal of Fish Biology, 85(4), 1163-1176.

Hecht, B.C., Matala, A.P., Hess, J.E., & Narum, S.R. (2015). Environmental adaptation in Chinook salmon (Oncorhynchus tshawytscha) throughout their North American range. Molecular Ecology, 24(22), 5573-5595.

Imsland, A.K., Handeland, S.O., & Stefansson, S.O. (2014). Photoperiod and temperature effects on growth and maturation of pre-and post-smolt Atlantic salmon. Aquaculture international, 22, 1331-1345.

Islam, M.M., Islam, N., Habib, A., & Mozumder, M.M.H. (2020). Climate change impacts on a tropical fishery ecosystem: Implications and societal responses. Sustainability, 12(19), 7970.

Jéhannet, P., Kruijt, L., Damsteegt, E.L., Swinkels, W., Heinsbroek, L.T.N., Lokman, P.M., & Palstra, A.P. (2019). A mechanistic model for studying the initiation of anguillid vitellogenesis by comparing the European eel (Anguilla anguilla) and the shortfinned eel (A. australis). General and Comparative Endocrinology, 279, 129-138.

Kaeriyama, M., & Sakaguchi, I. (2023). Ecosystem-based sustainable management of chum salmon in Japan’s warming climate. Marine Policy, 157, 105842.

Karasov, W.H. (2017). Integrative physiology of transcellular and paracellular intestinal absorption. Journal of Experimental Biology, 220(14), 2495-2501.

Kimoto, K., Mekata, T., Takahashi, H., & Nagasawa, K. (2015). Genetic structure of the amago and iwame forms of the red-spotted masu salmon Oncorhynchus masou ishikawae in the upper Ono River, northeastern Kyushu, southern Japan. Aquaculture Science, 63(3), 299-309.

Lall, S.P., & Kaushik, S.J. (2021). Nutrition and Metabolism of Minerals in Fish. Animals 2021, 11, 2711.

Langdon, J.S. (2019). Smoltification physiology in the culture of salmonids. Recent advances in aquaculture, 79-118.

Li, P., Liu, W., Jiang, L., Wang, J., Tang, F., Cui, K., & Gao, W. (2019). Effects of morphological traits on body mass of Chum salmon (Oncorhynchus keta). Journal of Northwest A & F University-Natural Science Edition, 47(9), 8-24.

Lokshall, G.B. (2023). Effects of photoperiod regimes and salinity on Na+, K+-ATPase α-isoform expression in gills and kidney during smoltification in Atlantic salmon (Salmo salar) in recirculating aquaculture systems (Master's thesis, The University of Bergen).

Lovett, B.A. (2020). Investigating the development of spinal curvature in farmed New Zealand king salmon Oncorhynchus tshawytscha (Doctoral dissertation, ResearchSpace@ Auckland).

Matthews, D.G., Zhu, R., Wang, J., Dong, H., Bart-Smith, H., & Lauder, G. (2022). Role of the caudal peduncle in a fish-inspired robotic model: how changing stiffness and angle of attack affects swimming performance. Bioinspiration & Biomimetics, 17(6), 066017.

Mobley, K.B., Aykanat, T., Czorlich, Y., House, A., Kurko, J., Miettinen, A., & Primmer, C.R. (2021). Maturation in Atlantic salmon (Salmo salar, Salmonidae): a synthesis of ecological, genetic, and molecular processes. Reviews in Fish Biology and Fisheries, 31(3), 523-571.

Morera, F.J., Castro-Guarda, M., Nualart, D., Espinosa, G., Muñoz, J.L., & Vargas-Chacoff, L. (2021). The biological basis of smoltification in Atlantic salmon. Austral journal of veterinary sciences, 53(1), 73-82.

Mozumder, M.M.H., Schneider, P., Islam, M.M., Deb, D., Hasan, M., Monzer, M.A., & Nur, A.A.U. (2023). Climate change adaptation strategies for small-scale Hilsa fishers in the coastal area of Bangladesh: social, economic, and ecological perspectives. Frontiers in Marine Science, 10.

Mugwanya, M., Dawood, M.A., Kimera, F., & Sewilam, H. (2022). Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. Aquaculture and Fisheries, 7(3), 223-243.

Nevoux, M., Finstad, B., Davidsen, J.G., Finlay, R., Josset, Q., Poole, R., & Jonsson, B. (2019). Environmental influences on life history strategies in partially anadromous brown trout (Salmo trutta, Salmonidae). Fish and Fisheries, 20(6), 1051-1082.

Newman, R. (2015). Artificial light at night and the predator-prey dynamics of juvenile Atlantic salmon (Salmo salar L.) in freshwater (Doctoral dissertation, Cardiff University).

Paulsen, T., Sandlund, O.T., Østborg, G., Thorstad, E.B., Fiske, P., Muladal, R., & Tronstad, S. (2022). Growth of invasive pink salmon (Oncorhynchus gorbuscha) at sea assessed by scale analysis. Journal of Fish Biology, 100(1), 218-228.

Pireddu, S. (2022). Ad Limine: Martin Parr’s Humans on the Beach. Re-empowering the English Seaside Resorts as Pop Culture. Imaginaires, (24), 110-130.

Rousseau, K., Martin, P., Boeuf, G., & Dufour, S. (2012). Salmonid smoltification. Metamorphosis in fish. CRC Press, Boca Raton, 167-215.

Stefansson, S.O., Bjornsson, B.T., Ebbesson, L.O.E., McCormick, S.D., 2008. Smoltification. In: Finn, R.N., Kapoor, B.G. (Eds.), Fish Larval Physiology. CRC Press, pp. 639–681.117.

Storz, J.F. (2016). Hemoglobin–oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? Journal of Experimental Biology, 219(20), 3190-3203.

Sundell, K., Berge, G.M., Ruyter, B., & Sundh, H. (2022). Low Omega-3 Levels in the Diet Disturbs Intestinal Barrier and Transporting Functions of Atlantic Salmon Freshwater and Seawater Smolts. Frontiers in Physiology, 13, 883621.

Swirplies, F., Wuertz, S., Baßmann, B., Orban, A., Schäfer, N., Brunner, R.M., & Rebl, A. (2019). Identification of molecular stress indicators in pikeperch Sander lucioperca correlating with rising water temperatures. Aquaculture, 501, 260-271.

Tacchi, L., Lowrey, L., Musharrafieh, R., Crossey, K., Larragoite, E. T., & Salinas, I. (2015). Effects of transportation stress and addition of salt to transport water on the skin mucosal homeostasis of rainbow trout (Oncorhynchus mykiss). Aquaculture, 435, 120-127.

Ugachi, Y., Kitade, H., Takahashi, E., Suzuki, S., Hayashi, M., Yamada, T., & Shimizu, M. (2023). Size-driven parr-smolt transformation in masu salmon (Oncorhynchus masou). Scientific Reports, 13(1), 16643.

Vargas-Chacoff, L., Saavedra, E., Oyarzún, R., Martínez-Montaño, E., Pontigo, J. P., Yáñez, A., & Bertrán, C. (2015). Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of Sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities. Fish physiology and biochemistry, 41, 1369-1381.

Vehanen, T., Sutela, T., & Huusko, A. (2023). Potential impact of climate change on salmonid smolt ecology. Fishes, 8(7), 382.

Yang, B.T., Wen, B., Ji, Y., Wang, Q., Zhang, H.R., Zhang, Y., & Chen, Z.Z. (2021). Comparative metabolomics analysis of pigmentary and structural coloration in discus fish (Symphysodon haraldi). Journal of Proteomics, 233, 104085.