CHEMICAL, TECHNO-FUNCTIONAL, AND ANTIOXIDANT PROPERTIES OF TIGERNUT (CYPERUS ESCULENTUS L.) RESIDUE FLOURS

Authors

  • A.K. OLADELE
  • A.A. LIMAN
  • M.F. ABASS
  • B. EKAWU

DOI:

https://doi.org/10.33003/jaat.2023.0901.24

Keywords:

Tigernut, Cyperus esculentus, residue flour, Techno-functional properties, pasting properties

Abstract

Tigernut processing generates nutritionally-rich residue, mostly discarded as waste. This research reports for the first time the amino acid profile, phenolic profile, and pasting properties of tigernut residues. Yellow and brown tigernut  residues were analysed for amino acid and phenolic profile, antioxidant, techno-functional and pasting properties. The total essential amino acids were 49 and 56% for yellow and brown tigernut residue flours, respectively. The flavonoid content and ferric reducing antioxidant property were 0.91 and 0.32 mg GAE/ g, and  3.43 and 1.41 AAE/ g for yellow and brown residue, respectively. Caffeic acid (29 – 56 mg/ 100 g), ferulic acid (39 mg/ 100 g), vanillic acid (38 mg/ 100 g), Quercetin (48 mg/ 100 g), and phenyl acetic acid (3 – 68 mg/ 100 g) occur in abundance in the residue flours. The oil absorption capacity (3.40 ml/ g), L* value (63.78), and b* value (15.61) were higher in yellow than in brown residue. Brown tigernut  residue flour cooked faster (5.77 min) than yellow tigernut residue flour (6.97 min). Some essential amino acids detected were lysine, leucine, and methionine. The reports obtained in this work showed that tigernut residues have the potential to be incorporated in food due to their richness in essential amino acids, phenolic compounds, and antioxidant activity

References

Achoribo, E. S., and Ong, M. T. (2017). Tigernut (Cyperus esculentus): Source of natural anticancer drug? Brief review of existing literature. Euromediterranean Biomedical Journal, 12(19), 91–94. https://doi.org/10.3269/1970-5492.2017.12.19

Adarkwah-Yiadom, M., and Duodu, K. G. (2017). Effect of extrusion cooking and simulated in vitro gastrointestinal digestion on condensed tannins and radical scavenging activity of type II and type III whole grain sorghum. International Journal of Food Science & Technology, 52(10), 2282–2294. https://doi.org/10.1111/ijfs.13510

Adebowale, K. O., and Lawal, O. S. (2003). Functional properties and retrogradation behaviour of native and chemically modified starch of mucuna bean (Mucuna pruriens). Journal of the Science of Food and Agriculture, 83(15), 1541–1546. https://doi.org/10.1002/jsfa.1569

Adebowale, K. O., and Lawal, O. S. (2004). Comparative study of the functional properties of bambarra groundnut ( Voandzeia subterranean ), jack bean ( Canavalia ensiformis ) and mucuna bean ( Mucuna pruriens ) flours. Food Research International, 37, 355–365. https://doi.org/10.1016/j.foodres.2004.01.009

Agboola, B. S., Ajala, T. O., and Odeku, O. A. (2018). The Glidant Properties of Cyperus esculentus, L (Tigernut) Starch in Metronidazole Tablet Formulation. Starch/Staerke, 70(3–4), 1–9. https://doi.org/10.1002/star.201700047

AOAC (2005). Official methods of analysis. 17th Edn., Association of Official Analytical Chemists, Washington, DC, USA

Apea-Bah, F. B., Minnaar, A., Bester, M. J., and Duodu, K. G. (2014). Does a sorghum-cowpea composite porridge hold promise for contributing to alleviating oxidative stress? Food Chemistry, 157, 157–166. https://doi.org/10.1016/j.foodchem.2014.02.029

Apea-bah, F. B., Serem, J. C., Bester, M. J., and Duodu, K. G. (2017). Phenolic composition and antioxidant properties of koose , a deep-fat fried cowpea cake. Food Chemistry, 237, 247–256. https://doi.org/10.1016/j.foodchem.2017.05.109

Aremu, M. O., Bamidele, T. O., Agere, H., Ibrahim, H., and Aremu, S. O. (2015). Proximate composition and Amino acid profile of raw and cooked black variety of Tiger nut (Cyperus esculentus L .) grown in Northeast Nigeria. Journal of Biology, Agriculture and Healthcare, 5(7), 213–221.

Ayo, J. A., Adedeji, O. E., and Ishaya, G. (2016). Phytochemical composition and functional properties of flour produced from two varieties of tigernut (Cyperus esculentus). FUW Trends in Science & Technology Journal, 1(1), 261–266.

Ayyanna, C., Ramesh, B., Sudha, T. Y. S., and PugazhenthanThangaraju. (2020). Evaluation of anticonvulsant and antioxidant properties of Cyperus esculentus Linn. in various types of experimentally induced seizures in rats. International Journal of Green Pharmacy, 14(4), 381–387.

Badejo, A. A., Falarunu, J. A., Duyilemi, T. I., and Fasuhanmi, O. S. (2020). Antioxidative and anti‑diabetic potentials of tigernut (Cyperus esculentus) sedge beverages fortified with Vernonia amygdalina and Momordica charantia. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-020-00524-y

Babiker, E. E. , Ozcan, M. M., Ghafoor, K., Al Juhaimi, F., Ahmed, I. A. M., Almusallam, I.

A. (2021). Bioactive compounds, nutritional and sensory properties of cookies prepared

with wheat and tigernut flour. Food Chemistry, 349, 129155.

https://doi.org/10.1016/j.foodchem.2021.129155

Beta, T., Nam, S., Dexter, J. E., and Sapirstein, H. D. (2005). Phenolic content and antioxidant activity of Pearled wheat and Roller-milled fractions. Cereal Chemistry, 82(4), 390–393. https://doi.org/10.1094/CC-82-0390

Bosch, L., Alegría, A., and Farré, R. (2005). RP-HPLC determination of Tiger nut and Orgeat Amino Acid contents. Food Sci Tech Int., 11(1), 33–38. https://doi.org/10.1177/1082013205051266

Builders, P. F., Mbah, C. C., Adama, K. K., and Audu, M. M. (2014). Effect of pH on the physicochemical and binder properties of tigernut starch. Starch/Stärke, 66, 281–293. https://doi.org/10.1002/star.201300014

Castrica, M., Rebucci, R., Giromini, C., Tretola, M., Cattaneo, D., Baldi, A., … Baldi, A. (2019). Total phenolic content and antioxidant capacity of agri-food waste and by-products. Italian Journal of Animal Science, 18(1), 336–341. https://doi.org/10.1080/1828051X.2018.1529544

Coskuner, Y., Ercan, R., Karababa, E., and Nazlıcan, A. N. (2002). Physical and chemical properties of chufa (Cyperus esculentus L ) tubers grown in the Cukurova region of Turkey. J Sci Food Agric, 82, 625–631. https://doi.org/10.1002/jsfa.1091

Ejoh, R., Pierre, G., Delattre, C., Michaud, P., and Ndjouenkeu, R. (2021). Chemical Treatment of Black Tiger nut Tubers ( Cyperus esculentus ) Variety to Obtain a Bio-based Product, (August). https://doi.org/10.20944/preprints202108.0331.v1

Eke-Ejiofor, J., and Oparaodu, F. O. (2019). Chemical, functional and pasting properties of flour from three Millet varieties. Research Journal of Food and Nutrition, 3(3), 15–21.

Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., and Blecker, C. (2011). Dietary fibre and fibre-rich by-products of food processing : Characterisation , technological functionality and commercial applications : A review. Food Chemistry, 124, 411–421. https://doi.org/10.1016/j.foodchem.2010.06.077

Eskander, D. M., Nassar, M. I., Mohamed, R. A., and Farrag, A. H. (2020). Isolation,

Characterization of Phytochemical Compounds and Hepatoprotective Activity

Evaluation in Rats of Various Extracts from Cyperus esculentus L. tubers Egyptian

Journal of Chemistry, 63(12), 4867–4873.

Falade, K. O., and Okafor, C. A. (2015). Physical , functional , and pasting properties of flours from corms of two Cocoyam ( Colocasia esculenta and Xanthosoma sagittifolium ) cultivars. J Food Sci Technol, 52(6), 3440–3448. https://doi.org/10.1007/s13197-014-1368-9

FAO/WHO 1995 Energy and protein requirement. General report of a joint FAO/WHO/UNU

expert consultation. WHO Technical report Series No 724.

FAO/WHO 1991 Protein quality evaluation. Food and Agricultural Organization of the United

Nations, Rome, Italy.

FAO/WHO 2013 FAO expert consultation. Dietary protein quality evaluation in human

nutrition. In FAO Food and Nutrition Paper; FAO/WHO, Auckland, New Zealand,

Glew, R. H., Glew, R. S., Chuang, L. T., Huang, Y, S., Millson, M., Constans, D., and Vanderjagt, D. J. (2006). Amino acid , mineral and fatty acid content of Pumpkin seeds (Cucurbita spp ) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods for Human Nutrition, 61, 51–56. https://doi.org/10.1007/s11130-006-0010-z

Hargrove, J. L., Greenspan, P., Hartle, D. K., and Dowd, C. (2011). Inhibition of Aromatase and a -Amylase by Flavonoids and Proanthocyanidins from Sorghum bicolor Bran Extracts. Journal of Medicinal Food, 14, 799–807.

Hoover, R. (2001). Composition , molecular structure , and physicochemical properties of tuber and root starches : a review. Carbohydrate Polymers, 45, 253–267.

Ikujenlola, A. V, Osungbade, O. R., and Gbadamosi, S. O. (2022). Bioactive and chemical properties of Kersting ’ s groundnut proteins. Food Hydrocolloids for Health, 2, 100043. https://doi.org/10.1016/j.fhfh.2021.100043

Ismaila, A. R., Sogunle, K. A., and Abubakar, M. S. (2020). Physico-chemical and functional characteristic of flour and starch from two varieties of tigernut (Cyperus esculentus). FUDMA Journal of Agriculture and Agricultural Technology, 6(1), 22–29.

Iwe, M. O., Michael, N., Madu, N. E., Obasi, N. E., Onwuka, G. I., Nwabueze, T. U., and Onuh, J. O. (2017). Physicochemical and pasting properties high quality cassava flour ( HQCF ) and wheat flour blends. Agrotechnology, 6(3), 1000167. https://doi.org/10.4172/2168-9881.1000167

Iwe, M. O., Onyeukwu, U., and Agiriga, A. N. (2016). Proximate , functional and pasting properties of FARO 44 rice , African yam bean and brown cowpea seeds composite flour Proximate , functional and pasting properties of FARO 44 rice , African yam bean and brown cowpea seeds composite flour. Cogent Food & Agriculture, 3(1). https://doi.org/10.1080/23311932.2016.1142409

Lawal, O. S., and Adebowale, K. O. (2005). Physicochemical characteristics and thermal properties of chemically modified jack bean (Canavalia ensiformis) starch. Carbohydrate Polymers, 60, 331–341. https://doi.org/10.1016/j.carbpol.2005.01.011

Liu, H., Miao, W., Wang, R., Chen, N., Ma, S., and Wang, X. (2021). Improvement of functional and rheological features of tigernut tuber starch by using gum derived from Chinese quince seeds. LWT - Food Science and Technology, 143, 111180. https://doi.org/10.1016/j.lwt.2021.111180

López-marcos, M. C., Bailina, C., Viuda-martos, M., Pérez-alvarez, J. A., and Fernández-lópez, J. (2015). Properties of dietary fibers from Agroindustrial coproducts as source for fiber-enriched foods. Food Bioprocess Technol, 8, 2400–2408. https://doi.org/10.1007/s11947-015-1591-z

MacDonald-Wicks, L. K., Wood, L. G., and Garg, M. L. (2006). Methodology for the determination of biological antioxidant capacity in vitro: a review. Journal of the Science of Food and Agriculture, 86, 2046–2056. https://doi.org/10.1002/jsfa

Maga, J. A. (1982). Phytate: Its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. Journal of Agricultural and Food Chemistry, 30(1), 1–9.

Ocheme, O. B., Adedeji, O. E., Chinma, C. E., Yakubu, C. M., and Ajibo, U. H. (2018). Proximate composition , functional , and pasting properties of wheat and groundnut protein concentrate flour blends. Food Sci Nutr., 6, 1173–1178. https://doi.org/10.1002/fsn3.670

Okaka, J.C., and Potter, N. N. (1979). Physicochemical and functional properties of cowpea

powders processed to reduce beany flavour. J. Food Sci.; 44:1235 - 1240

Oladele, A. K., Adebowale, J. O., and Bamidele, O. P. (2017). Phenolic profile and antioxidant activity of Brown and Yellow varieties of Tigernut (Cyperus esculentus L.). Nigerian Food Journal, 35(1), 51 -59

Oladiran, D. A., and Emmambux, N. M. (2017). Effects of extrusion cooking and wheat bran substitution on the functional , nutritional , and rheological properties of cassava-defatted toasted soy composite. Starch/Stärke, 1600183, 1–9. https://doi.org/10.1002/star.201600183

Oladiran, D. A., and Emmambux, N. M. (2018). Nutritional and functional properties of extruded cassava-soy composite with grape pomace. Starch/Stärke, 1700298, 1–11. https://doi.org/10.1002/star.201700298

Olayinka, O. O., Adebowale, K. O., and Olu-Owolabi, B. I. (2008). Effect of heat-moisture treatment on physicochemical properties of white sorghum starch. Food Hydrocolloids, 22(2), 225–230. https://doi.org/10.1016/j.foodhyd.2006.11.004

Onwuka, G. I. (2006). Soaking, boiling and antinutritional factors in pigeon peas (Cajanus cajan) and cowpeas (Vigna unguiculata). Journal of Food Processing and Preservation, 30, 616–630.

Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L., and Napolitano, A. (2020). Bioactive phenolic compounds from Agri-food wastes : An update on green and sustainable extraction methodologies. Frontiers in Nutrition, 7, 1–27. https://doi.org/10.3389/fnut.2020.00060

Patrón-Vázquez, J., Baas-dzul, L., Medina-torres, N., Ayora-talavera, T., Sánchez-Contreras, Á., García-Cruz, U., and Pacheco, N. (2019). The effect of drying temperature on the phenolic content and functional behavior of flours obtained from Lemon wastes. Agronomy, 9, 1–16.

Ramli, N. A. M., Chen, Y. H., Zin, Z. M., Abdullah, M. A. A., Rusli, N. D., and Zainol, M. K. (2021). Effect of soaking time and fermentation on the nutrient and antinutrients composition of Canavalia ensiformis ( Kacang Koro ). In IOP Conf. Series: Earth and Environmental Science (pp. 1–8). https://doi.org/10.1088/1755-1315/756/1/012033

Roselló-soto, E., Poojary, M. M., Barba, F. J., Lorenzo, J. M., Mañes, J., and Molto, J. C. (2018). Tiger nut and its by-products valorization : From extraction of oil and valuable compounds to development of new healthy products. Innovative Food Science and Emerging Technologies, 45, 306–312. https://doi.org/10.1016/j.ifset.2017.11.016

Sánchez-zapata, E., Zunino, V., Pérez-alvarez, J. A., and Fernández-lópez, J. (2013). Effect of tigernut fibre addition on the quality and safety of a dry-cured pork sausage (“Chorizo”) during the dry-curing process. Meat Science, 95, 562–568. https://doi.org/10.1016/j.meatsci.2013.05.026

Sanchez-Zapata, Fuentes-Zaragoza, E., Fernandez-Lopez, J., Sendra, E., Sayas, E., Navarro, C., and Perez-Alvarez, J. A. (2009). Preparation of dietary fiber powder from Tiger nut (Cyperus esculentus ) milk (“ Horchata ” ) byproducts and its physicochemical properties. J. Agric. Food Chem., 57, 7719–7725. https://doi.org/10.1021/jf901687r

Yu, Y., Lu, X., Zhang, T., Zhao, C., Guan, S., Pu, Y., and Gao, F. (2022). Tiger nut (Cyperus esculentus L.): Nutrition, processing, function and applications. Foods, 11, 601.

Downloads

Published

2023-10-30