BIOLOGY AND MORPHOMETRICS OF THE FALL ARMYWORM, Spodoptera frugiperda J. E. SMITH (LEPIDOPTERA: NOCTUIDAE) IN IBADAN, SOUTHWEST NIGERIA

Authors

  • O.A. OJUMOOLA
  • A.A. OMOLOYE

DOI:

https://doi.org/10.33003/jaat.2022.0801.103

Keywords:

Egg mars, larver instars, moth logentivity, Sexual Size Dimorphism, Integrated Pest Management

Abstract

Studies on the development and morphological description of the fall armyworm, Spodoptera frugiperda are important for its sustainable management on the continent. Such studies are, however scanty in Africa and non-existent in Nigeria. Consequently, we studied fall armyworm development on maize leaves from egg to moth. Data was collected on egg hatchability, development duration, and morphometrics of life stages. Total development duration for egg, larva, and pupa was 2–3, 11–12, and 7–10 days, respectively. Egg incubation period, diameter, and percentage hatchability were 2.10±0.06 days, 0.24±0.01 mm, and 81.50±2.28 %, respectively. Larva comprised six-instars; with the first and last respectively measuring 1.64±0.03 mm and 26.45±0.44 mm body-length, 0.18±0.01 and 3.45±0.07 mm body-width, 0.12±0.01 mm, and 2.45±0.02 mm head-capsule-width. Pupa body-length and body-width were 14.38±0.14 mm and 4.21±0.04 mm, respectively. Female moths were larger and emerged a day ahead of males. Body length, body width, and wingspan of male and female moths were 14.93±0.25 mm and 14.66±0.19 mm; 2.71±0.08 mm and 3.14±0.05 mm; and 13.65±0.24 mm and 14.17±0.14 mm, respectively. Development duration of S. frugiperda larvae in Nigeria is shorter than that reported in the Americas but within the range reported in other parts of Africa. Findings in the study also confirm the ability of S. frugiperda moths to survive without food for up to a week making them a possible contaminant of maize grains and other agricultural commodities during transcontinental trades. Information provided in this study will aid the detection, identification, and management of the pest on farmers’ field and on traded commodities.

References

Ali, A., Lutrell, R. G. & Schneider, J. C. (1990). Effects the temperature and larval diet on development of the fall armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 83, 725–733.

Aguilon, D.J.D. & Velasco, L.R.I. (2015). Effects of larval rearing temperature and host plant condition on the development, survival, and coloration of African armyworm, Spodoptera exempta Walker (Lepidoptera: Noctuidae). Journal of Environmental Science and Management, 8, 54–60.

Assefa, F. & Ayalew, D. (2019). Status and control measures of fall armyworm (Spodoptera

frugiperda) infestations in maize fields in Ethiopia: A Review. Cogent Food and Agriculture, 5, 1641902. https://doi.org//10.1080/23311932.2019.1641902.

Busato, G. R., Grützmacher, A. D., Garcia, M. S., Giolo, F. P., Zotti, M. J. & Stefanello, J. R. (2005). Biologia comparada de populações de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) em folhas de milho e arroz. Neotropical Entomology, 34, 743–750.

Campos, M. & Phillips, T. W. (2014). Attract-and-Kill and other pheromone-based methods to suppress populations of the Indianmeal moth (Lepidoptera: Pyralidae). Journal of Economic Entomology, 107, 473–480.

Capinera, J. L. (2001). Handbook of vegetable pests. Orlando, Fl: Academic press.

Cock, M. J. W., Beseh, P. K., Buddie, A. G., Cafa, G. & Crozier, J. (2017). Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Scientific Reports, 7, 4103.

Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Corniani, N., Early, R., Godwin, J., Gomez, J., Gonzalez Moreno, P., Murphy, S.T., Oppong-Mensah, B., Phiri, N.C., Silvestri, S. & Witt, A. (2017). Fall armyworm: impacts and implications for Africa. Outlooks on Pest Management, 28, 196-201.

Debac, L., Lecharpentier, P. & Thiery, D. (2010). Larval instars determination for the European Grapevine moth (Lepidoptera: Tortricidae) based on the frequency distribution of head-capsule widths. Crop Protection, 29(6), 623–630.

Du Plessis, H., Schlemmer, M-L., & Van Den Berg, J. (2020). The Effect of Temperature on the Development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects, 11, 228. https://doi.org/10.3390/insects11040228

Dyar, H. G. (1890). The number of moults of lepidopterous larvae. Psyche, 5, 420 – 422.

Esperk, T., Tammaru, T., Nylin, S. & Teder, T. (2007). Achieving high sexual sex dimorphism in insects: females add instars. Ecological Entomology, 32, 243–256. https://doi.org/10.1111j.1365-2311.2007.00872.x

FAO, Food and Agriculture Organization (2017). Fall armyworm (Spodoptera frugiperda): Identification, biology and ecology. http://www.fao.org/17840EN/1/09.17

Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annual Review of Ecology and Systematics, 28, 659–687. https://doi.org/10.1146annurev.ecolsys.28.1.659

Gillot, C. (2005). Entomology. 3rd Edition. Springer Science and Business Media. Dordrecht, The Netherlands.

Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. (2016). First Report of outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa. PLoS ONE, 11, 10.

Hardke, J. T., Lorenz III, G. M. & Leonard, B. R. (2015). Fall Armyworm (Lepidoptera: Noctuidae) Ecology in Southeastern Cotton. Journal of Integrated Pest Management, 6(1), 10, https://doi.org//10.1093/jipm/pmv009

Howe, R.W. (1967). Temperature e_ects on embryonic development in insects. Annual Review of Entomology, 12, 15–42.

ICIPE (International Centre of Insect Physiology and Ecology) (2020). ICIPE launches mass release of indigenous natural enemies to control fall armyworm. https://www.icipe.org/news/icipe-launches-mass-release-indigenous-natural-enemies-control-fall-armyworm

Kamara, A. Y., Kamai, N., Omoigui, L. O., Togola, A. & Onyibe, J. E. (2020). Guide to maize production in Northern Nigeria, IITA, Ibadan, Nigeria, 18 pp.

Kasoma, C., Shimelis, H. & Laing, M. D. (2020). Fall armyworm invasion in Africa: implications for maize production and breeding. Journal of Crop Improvement, https://doi.org//10.1080/15427528.2020.1802800

Liu, T., Wang, J., Hu, X & Feng, J. (2020). Land-use change drives present and future distributions of Fall armyworm, Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae). Science of the Total Environment, 706, 135872.

Luginbill, P. (1928). The fall armyworm. USDA Technical Bulletin No. 34, 92 pp.

Montezano, D.G., Specht, A., Sosa-Gómez. A.D.R., Roque-Specht, V.F., Sousa-Silva, J.C., Paula-Moraes, S.V., Peterson, J.A. & Hunt, T.E. (2018). Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26(2), 286–300.

Montezano, D.G., Specht, A., Sosa-Gómez, D.R., Roque-Specht, V.F., DE Paula-Moraes, S.V., Peterson, J.A. & Hunt, T.E. (2019). Developmental parameters of Spodoptera frugiperda (Lepidoptera: Noctuidae) immature stages under controlled and standardized conditions. Journal of Agricultural Science, 11, 76–89.

Odebiyi, J. B. (1981). Studies on the biology of the cowpea pod-borer, Maruca testulalis in Kenya—I. Determination of the larval instars. International Journal of Tropical Insect Science 1(4), 339–341.

Ojo, J. A. & Omoloye, A. A. (2015). Life History of the Tamarind Weevil, Sitophilus linearis (Herbst) (Coleoptera: Curculionidae), on Tamarind Seed. Journal of Insects, 11, 1-5.

Patel, P. P., Patel, S. M, Pandya, H. V. & Amlani, M. H. (2017). Biology and morphometrics of citrus butterfly Papilio demoleus Linnaeus (Lepidopetra: Papilionidae) on Citrus limon (L.) osbeck. International Journal of Chemical Studies, 5(5), 1413 – 1435

Porter, J.H., Parry, M.L. & Carter, T.R. (1991). The potential effects of climatic change on

agricultural insect pests. Agricultural and Forestry Meteorology, 57, 221–240.

Prasanna, B. M., Bruce, A., Winter, S., Otim, M., Asea, G., Sevgan, S., Ba, M., van den Berg, J., Beiriger, R., Gichuru, L., Trevisan, W., Williams, P., Oikeh, S., Edge, M., Huesing, J.E. & Powell, T. (2018). Host plant resistance to fall armyworm. In B.M. Prasanna, J.E. Huesing, R. Eddy, V.M. Peschke (Eds.), Fall Armyworm in Africa: A Guide for Integrated Pest Management. Mexico, CDMX, pp. 45–62.

R Core Team (2021). R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https:/www.R-project.org/

Rojas, J. C., Kolomiets, M. V. & Bernal, J. S. (2018). Nonsensical choices? Fall armyworm moths choose seemingly best or worst hosts for their larvae, but neonate larvae make their own choices. PLoS ONE 13(5), e0197628.

Rwomushana, I., Bateman, M., Beale, T., Beseh, P., Cameron, K., Chiluba, M., Clottey, V., Davis, T., Day, R., Early, R., Godwin, J., Gonzalez-Moreno, P., Kansiime, M., Kenis, M., Makale, F., Mugambi, I., Murphy, S., Nunda. W., Phiri, N., Pratt, C. & Tambo, J. (2018). Fall armyworm: impacts and implications for Africa. Evidence Note Update (October 2018), CABI, UK. https://www.invasive-species.org/Uploads/InvasiveSpecies/Faw %20Evidence %20Note %20October %202018 %20Final.pdf

Sharanabasappa, S. D., Kalleshwaraswamy, C. M., Maruthi, M. S. & Pavithra, H. B. (2018). Biology of invasive fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae) on maize. Indian Journal of Entomology, 80(3), 540–543. https://doi.org/10.5958/0974-8172.2018.00238.9

Sparks, A. N. (1979). Review of the biology of the fall armyworm (Lepidoptera, Noctuidae). Florida Entomologist, 62, 82–87.

Stillwell, R. C. & Davidowitz, G. (2010). A developmental perspective on the evolution of sexual dimorphism of a moth. Proceedings of the Royal Society B, 277, 2069-2074. https://doi.org/10.1098rspb.2009.2277

Stillwell, R. C., Blanckenhorn, W. U., Teder, T., Davidowitz, G. & Fox, C. W. (2010). Sex differences in phenotypic plasticity of body size affect variation in sexual size dimorphism in insects: from physiology to evolution. Annual Review of Entomology, 55, 227–245. https://doi.org/10.1146annurev-ento-112408-085500

Tobin, P.C., Nagarkatti, S. & Saunders, M.C. (2003). Phenology of Grape berry moth (Lepidoptera: Tortricidae) in cultivated grape at selected geographic locations. Environmental Entomology, 32, 340–346.

Vickery, R. A. (1929). Studies on the fall armyworm in the Gulf Coast district of Texas.

USDA, Washington, DC. Tech. Bull. No. 138. 64 pp.

Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. (2016). Modeling seasonal migration of fall armyworm moths. International Journal of Biometeorology, 60, 255–267.

Zhou, C., Wang, L., Price, M., LI, J., Meng, Y. & Yue, B. (2020). Genomic features of the fall armyworm Spodopdetra frugiperda (J.E Smith) yield insights into its defence system and flight capability. Entomological Research, 50 (2), 100–112. https://doi.org//10.1111/1748-5967.12413.

Downloads

Published

2022-09-15