

EVALUATION OF FARM PLAN AMONG IRRIGATED MAIZE FARMING HOUSEHOLDS IN LERE LOCAL GOVERNMENT AREA OF KADUNA STATE, NIGERIA

¹Folorunso, S.T., ²Adeola, S.S. & ¹Idakwo, D.A. & ³Bayo, D

¹Department of Agricultural Economics and Extension, University of Jos, Jos-Nigeria.

²Department of Agricultural Economics and Extension, Federal University, Dutsin' Ma, Katsina State, Nigeria.

³Forest Research Station, Jos, Plateau State, Nigeria.

Folorunso, S.T., solocom2012@gmail.com & folorunsos@unijos.edu.ng, Orchid no.

<https://orcid.org/000-003-3952-9692>, Adeola, S.S.; talk2adeola2rujesus@gmail.com,

<https://orcid.org/0000-0002-4939-8561> & Idakwo, D.A: daidakwo@gmail.com,

<https://orcid.org/0000-0002-0897-775>.

Corresponding author: Folorunso, S.T., Mobile number: 08037018157, 08188255624

ABSTRACT

This study evaluated optimal farm plan of irrigated maize production among farmers in Lere, Local Government Area, Kaduna State, Nigeria. Multi-stage sampling technique was used to randomly select 180 maize farmers in the study area. Primary data were collected through the use of questionnaire and analyzed using descriptive statistics, net-farm income model, linear programming model and principal component analysis. The result showed that majority of the maize farmers in the study area were male, their mean age was 36 years. All of the farmers had one form of education or the other. The mean household size of the respondents was 8 persons. The mean years of farming experience was 14 years. Majority (83%) of the respondents considered maize farming as their primary occupation. About 72% of the respondents had a farm size that ranges between 1-3 hectares, with a mean non-farm income of ₦116,388 per month. About 67% were members of cooperative society. Majority of the respondents had access to credit. Irrigated maize production was profitable, with total revenue, total cost and net-farm income of ₦1,952,335.0, ₦493,193.2 and ₦1,459,141.8 respectively, and Return On Investment of 2.96. The result of the Linear Programming analysis showed that labour used (h/ha) was binding, while yield (kg/ha), farm size used (ha), seed used (kg/ha) and fertilizer used (kg/ha) were not binding. The major constraints identified in maize production in the study area were classified under four major components: economic factors (24.64%), institutional factors (25.26%), environmental factors (36.78%) and infrastructural factors (13.37%). The study recommended that in order to ensure efficient utilization of resources in the study area: government should initiate adult education programmes for farmers; policy makers should consider the land consolidation; and farmers should invest in labour saving agricultural machinery.

Key words: Evaluation, Farm Plan and Profitability, Irrigated Maize Farmers, Lere LGA

INTRODUCTION

Nigerians grow maize (*Zea mays L.*), a significant grain crop, all over the country (Ayodele *et al.*, 2020). In some regions of the country, maize is grown all year round by combining rain-fed maize production, irrigation, and the cultivation of a water-logged area called Fadama (Aasa *et al.*, 2020). The majority of Nigerians eat maize, a significant cereal crop, as their second most important diet after rice (Yahaya *et al.*, 2020). Small-scale farmers are the main producers of maize, which

is the second most widely farmed and staple crop among families in Sub-Saharan Africa (Oluoch *et al.* 2022). Nigeria's average grain yield from maize is around 3 tonnes per hectare, while the country's expected annual need of 20 million tonnes has not yet been satisfied (Federal Ministry of Agriculture & Rural Development (FMARD), 2021).

In Nigeria, maize was first grown as a subsistence crop before progressively developing into a commercial commodity that provides raw materials for numerous agro-

based industries (International Institute for Tropical Agriculture (IITA), 2021). Many Nigerians rely on it as a source of income, including farmers, marketers, and women who sell boiled or roasted maize. Additionally, agro-based industries use maize as a raw material to produce secondary goods like cornflake and pop-corn (Aasa *et al.*, 2020).

Since it is the main source of energy, it is also essential in the formulation of feed for poultry and other livestock (Ayodele *et al.* 2020). Food and Agriculture Organization (FAO) 2023 reported that maize production decreased by - 0.1%, from 12,744 metric tonnes in 2021 to 12,735 metric tonnes in 2022. In 2022, widespread flooding and insecurity caused major crop losses and affected agricultural livelihoods nationwide (FAO 2023). The annual supply-demand mismatch in Nigeria is approximately 4 million tonnes (Okojie, 2022). The export embargo on maize was imposed as a result of the supply shortage (Price waterhouse Coopers (PWC), 2021). Nigeria is in a poor position to compete in the implementation of the Africa Continental Free Trade Area (AfCFTA) due to its current level of maize production and the country's almost zero exports of the crop (PWC, 2021). Adopting measures that would address the difficulties encountered by maize producers and establishing mechanisms to investigate and maximise the potential provided by the AfCFTA are crucial. Ethiopia in East Africa, Egypt in North Africa, Nigeria in West Africa, and South Africa in Southern Africa are the main nations that produce the most maize in their respective regions (Jordaan, 2022).

The top producers of maize in Africa are South Africa (16,800 metric tonnes), Nigeria (12,000 metric tonnes), Ethiopia (10,400 metric tonnes), and Egypt (7,600 metric tonnes), according to the United States Department of Agriculture (USDA, 2023).

The efficiency of farmers, which is influenced by their socioeconomic circumstances and farm features, is the primary determinant of maize output (Ebukiba *et al.*, 2020). Important factors used by farmers in the research area to produce maize include fertiliser, herbicides, insecticides, seed, labour, farm equipment such as hoes and cutlasses, and water availability (Yahaya *et al.*, 2020). Nigerian maize production underutilises its resources, resulting in low output and, consequently, low farm revenue (Alabuja *et al.*, 2022).

The optimal farm analysis of maize challenge is figuring out how to develop and manage maize crops on a farm in a way that is both profitable and efficient. This analysis takes into account a number of variables, including market prices, yield potential, input costs, and environmental conditions. Tijani & Sofoluwe (2021). Appropriate farm management techniques such as Linear Programming (LP) are required to guarantee farmers the highest possible return. Linear programming (LP), as applied to farm planning represents a systematic method of determining mathematically the optimum plan for the choice and combination of farm enterprises, so as to maximize income or minimize costs within the limits of available farm resources (Yang, 1995). Optimum decision making which is based on a quantitative analysis for achieving "desired goal" has been applied to Punjab farmers in India in spite of their complex situation compounded by the difficulty of comprehending the techniques at the initial stage of their learning process (Mehta, 1992). On technical side, the Nigerian farmers like these Punjab farmers are characteristically small-scale farmers who operate using crude implements, cultivate small land holdings and are poor resource-based. They are confronted with myriads of problems, which include optimal resource utilization and meagre resources to raise their incomes and consequently their living standards (Singh, 1978).

The challenge to improve on the contribution of agriculture to the Nigeria economy makes a study of this nature a worthy venture. Besides, most farm management studies in Kaduna State attempted production function analysis revealing the marginality conditions of resource use with respect to production of individual or selected enterprises. Such type of analysis in addition to being very partial in nature addressed only the existing aspect in the organization and operation of the farm business, and fails to answer as to what would be the optimum combination of resources under given restraining conditions. With particular focus on one of the most important cereal crops such as Maize, this study has contributed to knowledge in this way. Nigeria's small-scale farmers, who are known for their inefficient use of resources due to their inability to use the available resources effectively enough to provide the necessary output, are the main

producers of maize (Aasa *et al.*, 2020). Farmers frequently lack the education necessary to fully embrace sophisticated agricultural technology (Mariyono *et al.*, 2021). Resources must be used effectively in order to reach the highest possible level of production (Alabuja *et al.*, 2022). It is important to determine whether the farmers are making effective use of the resources at their disposal to boost their current level of maize production, as the current output has fallen short of the potential yield of 5-8 tonnes per hectare (Alabuja *et al.*, 2022). To assist farmers in planning and decision-making on achieving and optimising efficiency in production planning and resource allocation, Linear Programming was created (Alotaibi & Nadeem, 2021).

From the foregoing therefore, the following specific objectives were developed; i. describe the socioeconomic characteristics of maize farmers in the study area; ii. determine the profitability of maize production in the study area; iii. estimate the optimal annual maize production in the study area; iv. estimate the impact of Linear programming-based maize allocation on the farmers in the study area; and v. identify constraints to maize production in the study area.

METHODOLOGY

Study Area

The study was carried out in Nigeria's Kaduna state's Lere local government region. Southern Kaduna state contains the local government area of Lere. Saminaka is where the headquarters are situated. The Saminaka local

government area, which was established in 1976, was the basis for the 1991 local government area. Geographically, Lere is situated between latitudes 10°N and 39°N and longitudes 8°E and 57°E. Lere is bordered to the west and south by Kauru local government area, to the north-west by Kubau local government area, to the north-west by Doguwa local government area of Kano state, to the east by Toro local government area of Bauchi state, and to the south-east by Bassa local government area of Plateau state.

The area of Lere is 2,634 km². With a population of 339,740 (National Population Commission, 2006), Lere Metropolis is expected to have 514,242 residents by 2023, assuming a 2.5% annual population growth rate. Kudaru, Lere, Piriga, and Saminaka are the four (4) districts that make up the Lere Local Government Area. The average temperature in Lere is 32 degrees Celsius, and the area receives 1050 millimetres of precipitation annually. There are two different seasons in the research area: the dry season and the rainy season. The surface soils belong to the sandy loam to loam textural class, according to Magaji *et al.* (2022). With several markets in the Lere local government region, trade plays a significant role in the local economy. With a variety of crops cultivated nearby, including rice, groundnuts, cowpeas, millet, maize, and sugar cane, farming is also a significant activity in Lere. Crafts and the breeding of animals are two other significant economic activity in the study area.

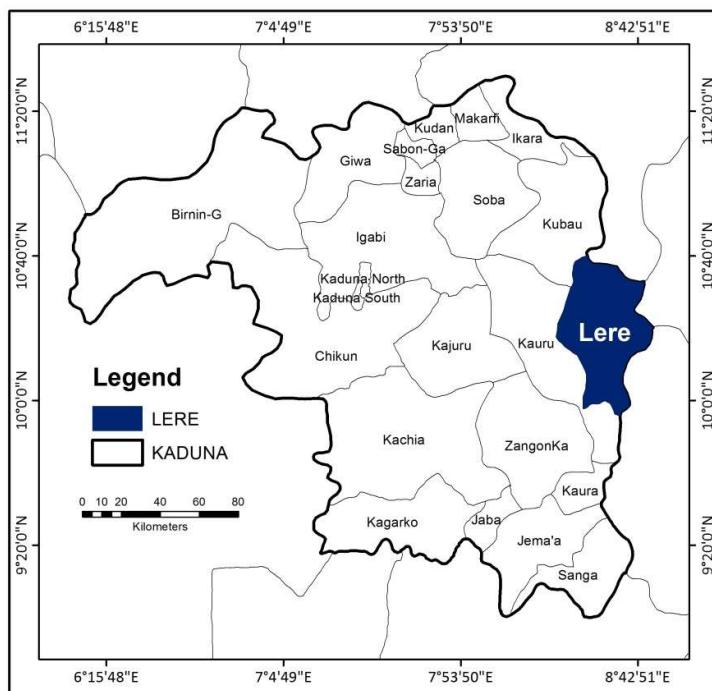


Figure 1. Map of Kaduna State showing Lere L.G.A

Sample Size and Sampling Procedure

The study's respondents were chosen using multi-stage sampling approaches. Because of the area's significance among maize growers, the Lere local government area in Kaduna state was purposefully chosen for the initial stage. In the second step, two districts in the study area—Lere and Piriga—were chosen at random using the ballot box method. Using the ballot box approach, four villages were chosen at random from the first two districts in the third stage. The settlements that were chosen are called Piriga (Kinugu, Patah, Tide, Warsa Piti) and Lere (Dogon Daji, Dokan Lere, Gidan Dutse, Lere). Lastly, farmers were chosen from the

sample frame using a straightforward random sampling technique. For this study, a questionnaire was chosen as the research tool. To calculate the sample size from a given population, the Yamane (1967) approach was applied. The following is a mathematical illustration of the Taro Yamane method:

$$\frac{N}{(1+N(e)^2)}$$

Where:

n = signifies the desired sample size.

N = signifies the finite size of the population under study.

e = signifies the maximum margin of error as will be determined by the researcher (0.10, 0.05, 0.01).

Table 1: Distribution of Maize Farmers in the Study Area.

LGA	Districts	Villages	Sample frame	Sample size (at 8%)
Lere	Lere	Dogon Daji	605	19
		Gidan Dutse	1000	23
		Lere	904	22
		Ramin kura	4210	29
		Garu	3212	29
		Patah	402	16
		Tide	880	22
		Warsa Piti	650	20
			11,863	180
Total				

contemporary farming methods may be impacted by this. The study's findings are consistent with those of Anthony *et al.* (2021), who found that farmers' managerial skills for successfully implementing new production technology tend to improve with formal education.

According to the results in table 4.6, 17% of respondents were civil servants, while 83% of respondents regarded maize farming as their principal vocation. This finding suggests that farmers in the research area are heavily dependent on maize production, underscoring the significance of enhancing maize production methods to boost output, revenue, and food security. The findings of Adeola *et al.* (2023), which claimed that the majority of respondents in the research region had maize farming as their primary occupation, are consistent with this conclusion. The majority of respondents (72%) had farms that were between one and three hectares in size. According to the results in table 4.7, approximately 22% of maize farmers owned more than 3 hectares of land, while 6% owned less than 1 hectare. The average agricultural area owned by maize growers was 3 hectares. This finding suggests that the majority of maize farmers in the research region are subsistence farmers with comparatively limited land holdings devoted to maize production. This outcome is consistent with research by Tahir *et al.* (2019) and Ebukiba *et al.* (2020), which found that the average farm size of maize producers was 2.75 hectares and 2.58 hectares, respectively.

According to the results in table 4.8, the majority of respondents (72%) reported non-farm incomes of less than ₦100,000 per month, while 6%, 17%, and 6% of respondents reported non-farm incomes of less than

₦299,000, less than ₦499,000, and more than ₦500,000 per month, respectively. The average monthly non-farm income for farmers was ₦166,388. The importance of the non-farm income gap among maize farmers suggests that many of them might be having financial difficulties. Their capacity to invest in inputs and other resources required to increase maize production in the study region may be impacted, and poverty may result. This is consistent with the findings of Ayodeji & Abiodun (2022), who claimed that non-farm revenue will increase household income and complement on-farm labour. About 67% of the respondents in the study area are members of cooperative associations, whereas 33% do not belong to any cooperative, according to an analysis of the respondents' distribution by cooperative association membership. This finding suggests that the majority of research participants benefit from the presumed advantages of cooperative societies. This outcome is consistent with research by Alabuja *et al.* (2022), which found that 66.3% of respondents belonged to a farmers' association. According to Table 1, 61% of the respondents in the research area had access to a formal source of credit, whereas 39% of the respondents did not. This finding suggests that a sizable percentage of respondents possess the funds necessary to make investments in their agricultural businesses. For maize farmers, the absence of formal finance presents a number of difficulties, such as diminished investment potential, susceptibility to shocks, dependence on unofficial financing, and stunted development potential. This outcome contradicts the findings of Biye *et al.* (2022), who found that 40.67% of the study's sampled respondents lacked access to credit.

Table 1: Socioeconomic characteristics of maize farmers in the study area

Variables	Frequency	Percentage	Mean	Std. Dev.
Gender				
Female	24	13		
Male	156	87		
Total	180	100		
Age				
20-29	40	22		
30-39	110	61	36	8.469
40-49	20	11		
50 and above	10	6		
Total	180	100		
Experience				

1-10	60	33			
11-20	100	56	14	8.331	
21-30	10	6			
31-40	10	6			
Total	180	100			
Household Size					
1-6	40	22			
7-12	130	72	8	2.718	
13-18	10	6			
Total	180	100			
Educational Qualification					
Non-Formal	90	50			
Primary	80	44			
Secondary	10	6			
Total	180	100			
Primary Occupation					
Civil Servant	30	17			
Farmer	150	83			
Total	180	100			
Farm Size					
Less Than 1.00	10	6			
1.00-2.99	130	72	3	4.789	
3.00-4.99	20	11			
5.00 and above	20	11			
Total	180	100			
Average Income					
Less Than 100000	130	72			
100000-299000	10	6	116388.9	189237.7	
300000-499000	30	17			
500000 and above	10	6			
Total	180	100			

Membership of Cooperative

No	60	33	
Yes	120	67	
Total	180	100	

Access to Credit

No	70	39	
Yes	110	61	
Total	180	100	

Profitability of Irrigated Maize Production

The profitability of maize production in the study region was calculated on a per hectare basis and is shown in table 2. According to Table 2, the total income per hectare was ₦1,952,335 and the total production cost per hectare was ₦493,193.2. Thus, ₦1,459,141.8 is the net farm income. The estimated total variable cost per hectare was ₦481,712.4, or 97.61% of the total output cost. In the research region, the depreciation cost of fixed assets was ₦11,480.9, or 2.3% of the total cost of producing one hectare of maize. This suggests

that if output is increased with variable costs, the overall return will rise while fixed costs remain constant. With a rate of return on investment per hectare (per naira invested) of 2.96, the study area's maize production generated a profit of ₦1.96 for every ₦1 invested. This suggests that growing maize in the study area is a profitable endeavour with a high potential for profit. The results of this study are in line with those of Muhammad & Bola (2020), who found that maize production had an increasing return to scale of 2.67.

Table 2: Profitability of maize production in the study area

Variables	Average Quantity/ha	Unit price (₦/kg)	Average value (₦/ha)	% of Total cost
Total Revenue	3549.7	550.0	1952335.0	
Seed (Kg/ha)	11.2	2,650.0	29,680.0	6.0
Fertilizer (Kg/ha)	7.2	1,420.0	10,153.0	2.1
Herbicides (L/ha)	9.2	9,185.7	8,4074.8	17.0
Water use (Irrigation cost)			136,694.4	27.7
Land clearing (Man-day)	14.0	1,433.3	20,111.0	4.1
Ridging (Man-day)	5.1	1,433.3	7,378.5	1.5
Planting (Man-day)	38.6	1,433.3	55,274.5	11.2
Fertilizer application (Man-day)	12.6	1,433.3	18,074.3	3.7
Weeding (Man-day)	42.5	1,433.3	60,862.5	12.3
Pesticides application (Man-day)	9.2	1,433.3	13,124.1	2.7
Harvesting (Man-day)	21.8	1,433.3	31,247.7	6.3
Threshing (Man-day)	10.5	1,433.3	15,037.7	3.0
Total variable cost (TVC)			481,712.4	
Fixed cost depreciated	4.0	2,882.2	11,480.9	2.3
Total cost			493,193.2	100
Net farm income			14,59141.8	
Return on investment			2.96	

Source: Field survey data, 2024

Estimation of Optimal annual maize production in the study area

Table 3's result demonstrates that, perhaps utilising all available labour, the linear programming model produced an optimal production of 400 kg. This suggests that there was a shortage of labour and that it was used to its full potential. The resources that were not fully utilised were seed, fertiliser, and farm size. For farm size, fertiliser, and seed, the excess values (slack values) for the underutilised resources are 1.94, 10, and 2,

respectively. The findings of this study imply that by emphasising effective labour utilisation, farmers in the study area may be able to attain optimal output. Farmers may need to think about reallocating their resources in order to better fit the available farm space and excess inputs in order to maximise their usage of resources. The findings in this study allied with the findings of Mohammed *et al*, (2022), who stated that majority of farmers were fairly efficient in the use of labour in their study.

Table 3 Result of the optimal annual maize production in the study area

Inputs	Value	Status	Slack
Yield (kg/ha)	3600	Not Binding	400
Farm size (ha) used	4.56	Not Binding	1.94
Labour (h/ha) used	120	Binding	0
Seed (kg/ha) used	12	Not Binding	2
Fertilizer (kg/ha) used	60	Not Binding	10

Source: Field survey data, 2024

Estimation of the impact of Linear Programming based maize allocation on the farmers in the study area

The variables preventing the study area's profit maximisation goal from being met, as determined by the results of linear programming, are shown in table 4.12. According to the findings, the model has probably already produced the highest yield

feasible given the constraints, as the lagrange multiplier value for Yield is 0 (zero). It may be necessary to spend greater costs that outweigh the advantages in order to push for a higher yield. Additionally, the lagrange multiplier values for seed, fertiliser, and farm size used were all 0 (zero). This suggests that the model has most likely determined the most effective way to allocate these resources and that further

use of them would either not yield any appreciable advantage or could have unfavourable effects. The outcome, which had a lagrange multiplier value of 8106.34, demonstrated that work was completely utilised. The objective value may be raised by 8106.34 (h/ha) for every unit increase in the amount of labour that is available. Given that it

hindered the attainment of the profit maximisation goal, this suggests that labour is the limiting resource in the research area's maize production. The findings of Ibrahim et al. (2019), who believed that labour was one of the main limiting constraints in the research area, are consistent with this.

Table 4 Estimation of the lagrange multipliers for binding constraints

Inputs	Final value	Lagrange multiplier
Yield (kg/ha) used	3600	0
Farm size (ha) used	4.56	0
Labour (h/ha) used	120	8106.343125
Seed (kg/ha) used	12	0
Fertilizer (kg/ha) used	60	0

Source: Field survey data, 2024

Constraints faced by Maize farmers in the study area

The constraints faced by respondents in the study area were subjected to principal component analysis model. In the principal component analysis model, constraints with eigen values greater than one (1) were retained and used in the model. The true factors that were retained explained 100% of the variance in the 8 variable components. The result presented in table 5 shows that the Kaiser Meyer-Olkin (KMO) and Bartlett's test of sphericity of 189.92 was significant at 1% level of probability. This demonstrated the feasibility of using the data set for factor analysis. The constraints were classified under four major components: economic, institutional, environmental and infrastructural factors.

Factor 1 (Economic factors): The constraints that load high in factor one includes lack of fertilizer (0.6878) and high cost of labour (0.6418) which explained 24.64% of the variance in the 8 variables scale. Lack of fertilizer limits maize production by reducing nutrient availability for optimal plant growth and yield. High cost of labour constrains maize

production by increasing production expenses and reducing profit margins.

Factor 2 (Institutional factors): This was dominated by constraints of lack of fund (0.6154) and access to credit (0.7476). The second factor component explained 25.26% of the variance. Inadequate access to formal source of credit could be due to high interest rate charged by commercial banks or financial institutions.

Factor 3 (Environmental factors): This was dominated by rainfall problem (0.6718), climate related problem (0.6616) and lack of soil fertility (0.6488). The third factor explained 36.73% of the variance.

Factor 4 (Infrastructural factor): This has high cost of transportation (0.7215) as the major challenge to maize production in the study area. The fourth factor explained 13.37% of the variance in the 8-variable scale. The findings in this study is similar to that of Alabuja et al, (2022) and Makama et al, (2022). They reported lack of fertilizer, lack of capital, climate change, high cost of labour and high cost of transportation to be among the major constraints affecting maize production activities in the study area.

Table 5 Principal component analysis of maize production constraints in the study area

Variables	Component			
	Factor 1	Factor 2	Factor 3	Factor 4
Lack of fertilizer	0.6878			
High cost of labour	0.6418			

Lack of fund	0.6154
Access to loan	0.7476
High cost of transportation	0.7215
Rainfall problem	0.6718
Climate related problem	0.6616
Lack of soil fertility	0.6488
Percentage of total variance	24.64
Kaiser-Meyer-Olkin	0.5091
Bartlett's test of sehericity (Chi-square)	189.92***

Source: Field survey data, 2024. *** represent significance at 1% level of probability.

REFERENCES

Aasa, O.S., Suleiman, R., Emeghara, U.U., Yahaya, U.F., Olangunju, O.E., Onwgbunam, N.E., Akanni, R., Ganiyu, L., Omodona, S. & Olukotun, O. (2020). Resource Use Efficiency among Maize Farmers in Lere L.G.A of Kaduna State, Nigeria. *Asian Journal of Advanced Research and Report*, 14(1): 1-9.

Adeagbo, O.A., Bamire, A.S., Akinola, A.A., Adeagbo, A.D., Oluwole, T.S., Ojedokun, O.A., Ojo, T.O., Kassem, H.S., & Emenike, C.U. (2023). The level of adoption of multiple climate change adaptation strategies: Evidence from small-holder maize farmers in South-West Nigeria, *Scientific African*, 22: 2468-2276.

Adeniran, E.G. & Adedoyin, L. (2018). Effective management on profitability in Agriculture Business in Nigeria: Evidence from JOF ideal family farms Limited. *International Journal of Innovative Finance and Economics Research*, 6(2): 42-49.

Adeola, S.S., Yusuf, H.D., Nazifi, B. & Ibrahim, H.Y. (2023). Maize Production Scale Efficiency and its Socioeconomic Determination among Small holder Farmers in Funtua Local Government Area, Katsina State, Nigeria. *Nigerian Agricultural Journal*, 54(1): 459-466.

Alabuja, F.O., Anthony, L. & Ebukiba, E.S. (2022). Resource use Efficiency and Factors influencing Maize Production in Kuje area council, Federal Capital Territory, Nigeria. *International Journal of Agriculture, Environment and Food Sciences*, 6(4): 507-515.

Anthony, L., Alabi, O.O., Ebukiba, E.S. & Gamba, V. (2021). Economic determinants of rice marketing decisions among small-holder rural farming households, Federal Capital Territory, Nigeria, *International Journal of Agriculture, Forestry and Life Sciences*, 5 (1): 29-44.

Ayodeji, Damilola Kehinde & Abiodun Akintunde Ogundesi. (2022). Distributive impacts of non-farm income on output and farm income of cassava farmers in South-Western Nigeria, *Scientific African*, 19 (1): 1535.

Ayodele, J.T., Ijah, A.A., Olukotun, O., Ishola, B.F., Oladele, O.N., Yahaya, U.F. & Omodona, S. (2020). Allocative Efficiency of Maize Production in Chikun L.G.A of Kaduna state, Nigeria. *Asian Journal of Advances in Agricultural Research*, 13(4): 44-54.

Belete, A.S. (2020). Analysis of Technical Efficiency in Maize Production in Guji Zone: Stochastic Frontier Model.

Agricultural & Food Security, 9(15): 2048-7010.

Bello, N.A., Frederick, K.Y., Nazeer, A. & Ibrahim, U.M. (2020). Profitability of Small-Scale Maize Production in Nigeria: A case study of Bichi L.G.A Kano state, Nigeria. *European Journal of Agriculture and Food Sciences*, 2(5).

Biye, S.U., Adamu, Y., Yidi, M.S., Danladi, B.B. & Sadiq, T.k. (2022). Determinants of Technical efficiency and profitability of Anchor borrower maize farmers in Gombe state, Nigeria, *Journal of Agricultural Economics*, 8 (2): 18-33.

Coster, A.S., Akintunde, O.k. & Oyebamiji, B.A. (2020). Analysis of Technical Efficiency of Small holder Maize Farmers in Taraba state, Nigeria. *Faman Journal*; 20(2).

Ebukiba, E.S., Anthony, L. & Adamu, S.M. (2020). Economic and Technical Efficiency of Maize Production among Small Scale Farmers in Abuja, Nigeria: Stochastic Frontier Model Approach. *European Journal of Agriculture and Food Sciences*, 2(6): 2684-7010.

Falola, A., Mukaila, R. & Muhammadu, M. (2022). Are Small-Scale Organic Maize Farmers Technically Efficient? Evidence from Nigeria. *Scientific paper Series Management, Economic Engineering in Agriculture and Rural Development*; 22(4): 217-224.

Fasakin, I. J. & Akinbode, B.B. (2020). Technical Efficiency of Maize Farmers in Oyo State, Nigeria. *Agricultural Journal*; 14(4): 70-74.

Federal Ministry of Agricultural & Rural Development (FMARD) (2021). 2020 Maize Briefing in Nigeria.

Food & Agricultural Organization. *FAOSTAT Statistical Database*; (2022).

Food & Agricultural Organization. *Global Information and Early Warning System*, (2023).

Gaviglio, A., Filippini, R., Madau, F.A., Marescotti, M.E., & Demartini, E. (2021). Technical efficiency and productivity of farms: a peri-urban case study analysis. *Agricultural Economics* 9: 11.

Gollin, D., Hansen, C.W. & Wingender, A.M. (2021) Two blades of grass: the impact of the green revolution. *Journal of Political Economy*; (8)129.

Gunter Hemrich. (2021) Gaps, Challenges and Progress in boosting Agricultural Productivity and ending hunger. *United Nations*.

Ibrahim, F.D., Oformata, A.O., Jirgi, A.J. & Adewumi, A. (2019). Optimum Production Plan for Maize-based crop farmers in Niger state, Nigeria. *Journal of Tropical Agriculture, Food, Environment and Extension*, 18(3): 35-41. ISSN: 1119-7455.

International Institute of Tropical Agriculture (IITA) (2021). Maize (*Zea mays*).

Jan Jordaan. (2022). Making Money from Maize in Africa. *Roff blog*, <https://www.roff.co.za/blogs/blog/making-money-from-maize-in-africa>.

Lencucha, R., Pal, N.E., Appau, A. Thow, A.M. & Droepe, J. (2020). Government policy and agricultural production: a scoping review to inform research and policy on healthy agricultural commodities. *Global health*; 16(11).

Magaji, M.J., Samndi, A.M., Ado, A.A., Ibrahim, B. & Abubakar, M.A. (2022). Soil Suitability Evaluation for Maize in Lere L.G.A of Kaduna state, Nigeria. *Nigerian Journal of Soil Science*, 25-29.

Makama, S.A., Umar, S.M., Isah, M.A., Sadiq, M.S. & Magaji, B.D. (2022). Socioeconomic Factors Influencing Maize Production in Giwa L.G.A of Kaduna state, Nigeria. *Journal of Agriculture and Environment*, 18(2): 135-139.

Mariyono, J., Waskito, J., Kuntariningsih, A., Latifah, E., Suswati, E. & Suwandi, T. (2020). Farmer Field School: Non-Formal Education to Enhance Livelihood of Indonesian Farmer Communities. *Community Development*, 52(2): 153-168.

Mehta P. Optimizing Techniques in Agriculture. Satosh Kumar Jain for CBS Publishers and Distributor Delhi, India. 1992;163.

Mohammed, S.S., Invider, P.S. & Muhammad, A.S. (2022). Labour use efficiency of rice farmers in Nigeria's North-Central region, *Siembra*, 9 (2): 2477-8850.

Muhammad, Bello & Buhari, Nazifi. (2023). Unlocking maize potential: Efficiency and constraints analysis among sole grown and intercrop farmers in Bebeji Local Government Area of Kano state, Nigeria,

Journal of Agriculture and Environment, 19 (1): 35-52.

Muhammed, Adeola. Adesina. & Bola, Titus. Omonona. (2020). Resource Use Efficiency of Rain-fed Maize Farming in Nigeria. *Noble International Journal Of Agriculture and Food Technology*, 2(9): 85-91.

National Population Commission. (2006).

Ogunniyi, A., Omotoso, O., Ayeni, J., Olufadewa, M., Rufai, M., Abiodun, O. & Olagunju, K.O. (2020). Resource Use Efficiency and Production Constraints among Cassava Farmers in Nigeria: Insight, Linkage and Pathway. *The Journal of Developing areas*, 54(4).

Okojie, J. (2022). Bridging Nigeria's Maize supply shortfall. <https://businessday.ng/agriculture/article/bridging-nigerias-maize-supply-shortfall/>. Accessed June, 2022.

Olouch, K.O., De Groote, H., Gitonga, Z.M. & Davis, K.F. (2022). A suite of Agronomic Factors can offset the effects of climate variability on rain-fed maize production in Kenya. *Scientific Reports*, 12(1): 16043.

Olugbenga, Omotayo Alabi & Ibraheem Abdulazeez (2018). Economics of Maize (*Zea Mays*) Production in Igabi Local Government Area, Kaduna state, Nigeria, *Journal of Agricultural Faculty of Gazioglu University*, 35(3): 248-25.

Organizational for Economic Cooperation & Development (OECD), 2021.

Osim, O.O. & Oniah, M.O. (2023). Technical Efficiency in Maize Crop Production by Small Scale Farmers in Central Agricultural Zone of Cross River state, Nigeria. *European Journal of Agriculture and Forestry Research*, 11(1): 13-23.

PricewaterhouseCoopers (PwC, Nigeria) Ltd. (2021). Positioning Nigeria as Africa's leader in maize production for AfCFTA.

Singh K. Optimum Land Use Pattern and Resource Allocation in a Growing Economy. *Indian J. Agric. Econ.* 1978;33(1):44-58.

Sofoluwe, N.A. & Tijani, A.A. (2020) Optimal Crop Plan of Cooperative Farmers in Osun state Nigeria: A Linear Programming Approach. *Applied studies in Agribusiness and Commerce*, (15): 1-2.

Tahir, A.D., Bello, M. & Saleh, R.A. (2019). Analysis of Allocative Efficiency of Small-Scale Maize Production in the Guinea Savannah Region of Borno state, Nigeria. *Journal of Agricultural Economics, Environment and Social Sciences*; 5(1&2).

Tesfamichael, W., Abebe, M., Arega, A., Tahirou, A., Sam, A., Baffour, B.A., Melaku, G., Wendie, M. & Silvestro, M. (2023). Drivers of transformation of the maize sector in Nigeria. *Global food security*, (38): 2211-9124.

United States Department of Agriculture. (2023). Corn Explorer, September.

Yahaya, U.F., Emeghara, U.U., Onwuegbunam, N.E., Akanni, J.R., Olagunju, O.E., Suleiman, R., Aasa, O.S., Agbomakha, F.I., Ganiyu, L. & Olukotun, O. (2020). Cost and Return Analysis of Maize Production in Lere L.G.A of Kaduna state, Nigeria. *South Asian Journal of Social Studies and Economics*, 8(1): 45-54.

Yamane, T. (1967). Statistics: An Introductory Analysis. 2nd Edition, Harper and Row, New York.

Yang WY. Methods of Farm Management Investigation for Improving Farm Productivity. FAO, Rome; 1995.