

FUDMA Journal of Agriculture and Agricultural Technology ISSN: 2504-9496 Vol. 8 No. 2, December 2022: Pp.33-47.

Doi: https://doi.org/10.33003/jaat.2022.0802.06

DISTRIBUTION OF HERBACEOUS WEEDS OF SELECTED UNDISTURBED LOCATIONS ON UNIVERSITY OF ABUJA MAIN CAMPUS

^{1*}Jimin, A. A., ²Abdullahi, I. N. and ³Ibrahim A. J.
 ¹Dept. of Crop & Environmental Protection, J. S. Tarka University, Makurdi
 ²Dept. of Crop Science, Faculty of Agriculture, University of Abuja, Abuja
 ³Dept. of Agronomy, Federal University, Lafia
 ^{*}Corresponding Author; jimin.alfred@uam.edu.ng; +2348060983612

ABSTRACT

A study was carried out to determine occurrence and distribution of herbaceous weed species of selected undisturbed locations of University of Abuja Main Campus. 8 locations were selected and 12 coordinate points were assessed within each of the locations using a Geograhical Positioning System (GPS). Weed species were sampled with the use of quadrat (1 m²), randomly thrown at different points of infestation of herbaceous weeds. A total of 1735 herbaceous weeds belonging to 39 species and 14 families were identified. Hyptis suaveolens (mint weed) was observed to be the most occurring specie (398), followed by *Calopogonium mucunoides* (248), Sida acuta (110), *Paspalum vaginatum* (88) and *Tridax procumbens* (81). The highest density of Hyptis suaveolens was observed at the School Gate (7.3), followed by Senate Building (5.8), The highest relative densities were observed at School Gate (32.4) and Faculty of Agriculture (24.1). Also, the highest frequency of occurrence of identified species were observed at the School Gate (70.3), followed by Senate building (85%), respectively. Weed abundance was observed to be highest at the School Gate (73.3.3), followed by Senate Building (690). The lowest abundance was at Faculties of Law and Veterinary Medicine (211.1). It is, therefore, recommended that control is required to mitigate their harmful effects. Also, the need for appropriate design and implementation of weed management strategies which may decrease the density or noxiousness of herbaceous weeds.

Keywords: Herbaceous weeds; Undisturbed locations

INTRODUCTION

Herbs as weeds express their harmful effects slowly, steadily and inconspicuously but may encumber other species and increase soil seed bank if no restrictions are imposed to control infestation (TNAU, 2016; Solomon *et al.*, 2004). The weeds reduce plant diversity by competing for nutrients, moisture, solar radiation and space. They serve as hosts for insects, and harmful pathogens or their root exudates may be detrimental (Grime *et al.*, 2016). Knowledge of weeds' distribution, density and abundance dynamics is therefore, a prerequisite for early detection and consequently, timely management (Maszura *et al.*, 2018), especially as an essential step for prevention before they become established, hence, the need for this research.

Objective of Study

The study aimed to determine the density and distribution of herbaceous weed species at selected undisturbed locations on the University of Abuja Main Campus.

MATERIALS AND METHODS

Location of study

Eight (8) undisturbed locations at the University of Abuja Main Campus, Federal Capital Territory (FCT), Nigeria were selected and used for this study. In each location, plots measuring 10 x 20 m, with alleys of 2 m apart and coordinates taken accordingly were also used (Table 1). In each plot, 12 quadrats (1 m²) points were thrown randomly, and weed species within each quadrat were identified and counted based on the hierarchical trend of family and species.

Parameters measured

Weed density

Weed density measured the number of the species collected and counted in a 1 m^2 quadrat. This calculated as:

Density = total number weeds in a quadrattotal area of a quadrat (1 m²)

Weed relative density

Relative density expressed number of observed species of individuals of all the species occurring at each location, expressed as a percentage of all species present.

Relative Density $\frac{No \ of \ individuals \ of \ target \ species \ occurred}{Number \ of \ individuals \ of \ all \ species \ occurred} \times 100$

Weed frequency

Frequency was determined as the number of times a specie occurred in a sampling unit, expressed as a percentage (Booth *et al.*, 2018). It was used as an index

for comparing plant community changes (Bonham *et al.*, 2013), determined as:

 $Frequency (\%) = \frac{number of quadrats with weed species}{total no of quadrats used in each plot} \times 100$

Weed relative frequency

Relative frequency is expressed as a percentage of measure of the degree of dispersion of observed species in the sampling units. Relative frequency was calculated by dividing frequency by the sum of the frequencies of all species, multiplied by 100.

Relative frequency (%) $\frac{numer \ of \ target \ species \ occured}{number \ of \ all \ the \ species \ occured} \times 100$

Weed species abundance

Species abundance estimates the number of individuals in the sampled locations (Kent, 2015), calculated as: $Abundance = \frac{total \ No \ of \ weed \ in \ all \ quarats}{Total \ No \ of \ quadrats \ in \ which \ species \ occurred}$

Weed species diversity

Species diversity was determined as the number of different species present in the locations and relative abundance of each of the specie observed in the study locations.

 $D=\underline{N(N-1)}$

```
\sum n(n-1)
```

Where, D= Species diversity index, N= Total number of weeds of all species, n= total number of weeds of each species, Σ = Sum.

Shannon-Weiner diversity index

The Shannon-Wiener diversity index (H) was used to estimate the diversity or species richness (the number of species in the study locations)

$H = -\sum[(pi) \times \log(pi)],$

Where: H - Shannon diversity index, pi - Proportion of individuals of i-th species in a whole community:

pi = n / N, where: n - individuals of a given type/species; and N - total number of individuals in a community, Σ - Sum symbol; and log - Usually the natural logarithm.

Statistics analysis

The data collected were subjected to descriptive analyses. The weed species were represented in tabular, pie chart forms.

RESULTS

Table 2 shows herbaceous weeds observed at selected locations of University of Abuja Main Campus. A total

of 1,735 species were observed in 39 species belonging to 14 families.

Figure I shows the percentage occurrence of identified families of herbaceous weeds at the study locations. Species of the family Lamiaceae had the highest (22 %) distribution of herbaceous weeds, followed by Poaceae (21 %), Leguminoseae (20 %), Malvaceae and Commelinaceae (9 %) respectively, while Cyperaceae was the least occurring (1 %) specie.

Table 3 shows herbaceous weeds sampled at University School Gate. 9 families of herbaceous weeds were observed with *Hyptis suaveolens* been the highest (88) preponderant, with a frequency of 100 % and density of 7.3, followed by *Calopogonium mucunoides* 75, frequency of 100 % and density of 6.3, *Sida acuta* 24, frequency of 75 % and density of 2. *Sida garckeana* Polak 20, frequency of 66 % and density of 1.7, *Mitracarpus villosus* 17, frequency of 58 % and density of 1.4, respectively.

Table 4 shows weeds observed at Senate Building. 9 families totaling 467 species were observed of which the preponderant were *Hyptis suaveolens* (69), with frequency of 83 %, density of 5.8, *Azolla pinnata* (35), frequency of 66 % and density of 2.9, *Oldenlandia corymbosa* Linn., *Hackelochola granularis* and *Bracharia lata* (Schumach.) each 31, but with frequencies of 88 % and 75 % and densities of 2.6 respectively.

Table 5 shows the occurrence and distribution characteristics of herbaceous weeds at Faculties of Agriculture and Veterinary Medicine.

At Faculty of Agriculture, 7 families were observed, with a total number of 206 weed species. *Hyptis suaveolens* was observed to be the highest occurring weed (50), frequency of 66 % and density of 4.2, followed by *Calopogonium mucunoides* (38), frequency of 83 % and density of 3.2, *Tridax procumbens L.* (31), frequency of 91 % and density of 2.6, *Panicum Laxum* SW (20), frequency of 66 % and density of 1.7, *Mitracarpus villosus* (15), frequency of 66 % and density of 1.3 respectively.

At Faculty of Veterinary Medicine however, 7 families were observed, totaling 123 weed species. *Calopogonium mucunoides* was observed to have the highest number (21), with a frequency of 75 %, density of 1.8, followed by *Hyptis suaveolens* (19), frequency of 75 %, density of 1.6, *Spermacocoe ocymoides* Burm F. (17), frequency of 66 % and density of 1.4, *Paspalum vaginatum* SW. (17), frequency of 66 %, density of 1.4. *Synedrella nodiflora Gaertn*. (15), frequency of 66 %, density of 1.3 respectively.

Table 6 shows the results obtained at Faculty of Engineering and Female Hostel.

At Faculty of Engineering, 7 families were observed, amounting to169 species out of which *Calopogonium mucunoides* was preponderant (27), frequency of 75 % and density of 2.3, followed by *Sida acuta Burn. F.* with total number of 26, frequency of 83 % and density of 2.2, *Tridax procumbens Linn.* with total number of 22, frequency of 66 % and density of 1.8, *Neptunia oleracea Lour.* with total number of 17, frequency of 66 % and density of 1.4, *Ageratum conyzoides Linn.* with total number of 15, frequency of 66 % and density of 1.3 Were the five highest weeds at the location.

At the Female Hostel, 138 weed species were observed with *Hyptis suaveolens* been the preponderant (31), frequency of 83 %, density of 2.6, followed by *Calopogonium mucunoides* (28), frequency of 100 %, density of 2.3, *Sida acuta Burn F.* (22), frequency of 75%, density of 1.8, *Senna obtusifolia* (16), frequency of 66%, density of 1.3, *Paspalum vaginatum SW*. (16), frequency of 66 % and density of 1.3 were the five (5), highest weeds at the location.

Table 7 shows the occurrence and distribution of herbaceous weeds at Faculties of Law and Social Sciences. At Faculty of Law, 118 weed species were observed, with *Calopogonium mucunoides* occurring relatively higher (21), than all the other species, frequency of 100 % and density of 1.8, Followed by *Hyptis suaveolens* (19), frequency of 75 % and density of 1.6. *Ipomoea aquamoclit* L. (14), frequency of 66 % and density of 1.1. *Typha australis* Schum. & Thonn. (12), frequency of 58 % and density of 1.

At Faculty of Social Sciences, 1 145 weed species were observed, among which *Hyptis suaveolens* occurred higher (22), that all other species, with frequency of 83 %, density of 1.8 and followed by *Digitaria horizontalis Wild.* (21), frequency of 75 % and density of 1.8, *Setaria megaphylla (Steud.)* (18), frequency of 75 % and density of 1.5, *Neptunia oleracea Lour.* (17), frequency of 66 % and density of 1.4. *Calopogonium mucunoides* (17), frequency of 66 % and density of 1.4 respectively.

Jimin, A. A., Abdullahi, I. N. and Ibrahim I. J

Location	Description	Coordinates	
		Latitude Longitude	
1	School gate	8°59'21.9"N. 7°11'33.1"E	
2	Senate Building	8°58'53.8"N 7°10'52.8"E	
3	Faculty of Agriculture	8°17'98.8"N 7°17'98.7E	
4	Veterinary Medicine	8°58'36.4"N 7°08'51.0"E	
5	Faculty of Engineering	8°58'38.8"N 7°10'34.3"E	
6	Female Hostel	8°58'33.6"N 7°10'32.4"E	
7	Faculty of Law	8°97'87.7"N 7°18'42.5"E	
8	Faculty of Social Sciences	8°58'39.7"N 7°11'06.2"E	

Table 1: Sampled locations and coordinates at University of Abuja Main Campus

S/N	Family	Scientific name	Common name	Total	
1	Lamiacea	Hyptis suaveolens	Mint	Weed	
			389		
2	Leguminosae	Calopogonium mucunoides	Calopo	248	
3		Senna obtusfolia. L.	Java bean	35	
4		Senna hirtus	Hairy senna	8	
5		Neptunia oleraceae Lour.	Water mimosa	47	
6	Malvaceae	Sida acuta	Broom weed	110	
7		Sida garckeana Polka	Corymbosa R. E. Fr	20	
8		Sida rhombifola. L.	Wire weed	22	
9		Malvastrum coromandelianum. L.	False mallow	13	
10	Poaceae	Paspalum vaginatum SW.	Seashore paspalum	88	
11		Digitaria nuda (Schumach.)	Crab grass	28	
12		Pennisetum pedicellatum	Feather grass	16	
13		Paspalum scrobiculatum. L.	Kodo millet	22	
14		Hackelochloa granularis. L.	Pit scale grass	31	
15		Seteria megaphylla (Steud.)	Big leaf bristle grass	36	
16		Bracharia lata (Schumach)	Signal grass	31	
17		Panicum laxum. Sw.	Lax panic grass	20	
18		Dactylocetenium aegyptium	Crow foot grass	9	
19		Cynodon dactylon	Bermuda grass	23	
20		Digitaria horizontalis Will.	Digit grass	21	
21		Sporobolus pyramidalis	Cat's tail grass	10	
22		Digitaria longiflora	Crab grass	14	
23		Rottboellia cochinensis	Itch grass	14	
24	Azollaceae	Azolla pinata. Br.	Mosquito fern	63	
25	Rubiaceae	Mitracarpus villosus	Mitracarpus hirtus	56	
26		Oldenlandia corymbosa. Linn.	Diamond flower	31	
27		Spermacocoe ocymoides	Button weed	31	
28	Campanulaceae	Wahlenbergia perrotteti	Manding Bambara	5	
29	Cyperaceae	Mariscus alternifolius	Umbrella sedge	19	
30	Asteraceae	Synedrella nodiflora gaertn	Starwort synedrella	53	
31		Tridax procumbens	Tridax, coat buttons	81	
32		Ageratum conyzoides Linn.	Billy goat weed	16	
33	Euphorbiaceae	Euphorbia hirta. L.	Asthma plant	12	
34	*	Euphorbia hyssopifolia Linn.	Hyssop leaf sand mat	6	

Table 2: Families, scientific/common names and number of all herbaceous weeds observed at the study locations

Jimin, A. A., Abdullahi, I. N. and Ibrahim I. J

35		Euphorbia heterophylla L.	Spurge weed	10	
36	Portulacaceae	Portulaca oleraceae Lour.	Hog weed	10	
37	Commelinaceae	Commelina erecta L.	Whitemouth dayflower	26	
38	Typhaceae	Typha australis Schum. & Thonn	Reed maces	38	
39	Convolvulaceae	Ipomea quamoclit L.	Cypress vine	14	
				Mean?	
Total	14 families			1735	

FUDMA Journal of Agriculture and Agricultural Technology, Volume 8 Number 2, December 2022, Pp 33-47

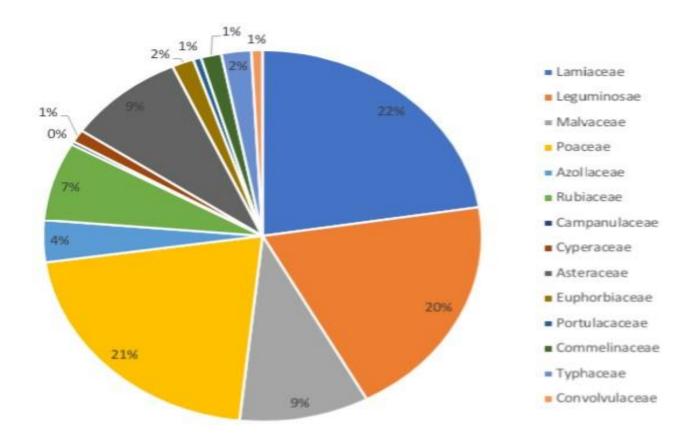


Figure I: Pie chart showing distribution of herbaceous weeds at the study locations

Jimin, A. A., Abdullahi, I. N. and Ibrahim I. J

S/N	Family	Scientific name	Common name	Total	F (%)	RF	D	RD	Α
1	Lamiaceae	Hyptis suaveolens	Mint weed	88	100	16.5	7.3	32.4	733.3
2	Leguminosae	Calopogonium mucunoides	Calopo	75	100	16.5	6.3	28	625.0
3	Malvacaea	Sida Acuta Burn. F.	Broom weed	24	75	12.4	2	8.8	266.7
4	Poaceae	paspalum Vaginatu SW.	Seashore paspalum	12	66	10.9	1	4.4	150.0
5	Azollacaea	Azolla pinnata	Mosquito fern	14	58	9.6	1.2	5.3	200.0
6	Malvaceae	Sida Garckeana Polak.	Sida Corymbosa R.E.Fr	20	66	10.9	1.7	7.5	250.0
7	Rubiaceae	Mitracarpus villosus	Mitracarpus hirtus	17	58	9.6	1.4	6.8	242.8
8	Rubiaceae	Spermacocoe ocymoides Burm.	Button weed	14	50	8.3	1.2	5.3	233.0
9	Campanulaceae	Wahlenbergia perrottetii	Manding Bambara	5	33	5.5	0.4	1.7	125.0

Table 3. Distribution of herbaceous weeds at University of Abuja School Gate

F=frequency RF=relative frequency D=density RD=relative density A=abundance

S/N	Family	Scientific name	Common name	Total	F %	RF	D	RD	Α
1	Poaceae	Digitaria nuda (Schumach.)	Crab grass	28	66	5.0	2.3	5.9	350.0
2	Cyperacea	Mariscus alternifolius Vahl.	Umbrella sedge	19	66	5.0	1.6	4.1	237.5
3	Poaceae	pennisetum pedicellatum Trin.	Feather Pennisetum	16	66	5.0	1.3	3.3	200.0
4	Poaceae	Paspalum scrobiculatum Linn.	Kodo millet	22	83	6.3	1.8	4.6	220.0
5	Rubiaceae	Mitracarpus villosus	Mitracarpus hirtus	16	58	4.4	1.3	3.3	228.6
6	Poaceae	Rottboellia Cochinensis.	Itch grass	14	66	5.0	1.2	3.1	200.0
7	Poaceae	Hackelochola Granularis (Linn.)	Pit scale grass	31	75	5.7	2.6	6.7	344.4
8	Poaceae	Setaria Megapgylla	Big leaf bristle grass	18	75	5.7	1.5	3.8	200.0
9	Asteraceae	Synedrella nodiflora Gaertn.	Starwort synedrella	14	58	4.4	2.2	3.1	175.0
10	Poaceae	Brachiaria lata (Schumach.)	Signal grass	31	58	4.4	2.6	6.7	344.4
11	Asteraceae	Tridax procum Linn.	Tridax, coat button	16	66	5.0	1.3	3.3	200.0
12	Rubiaceae	Oldenlandia Corymbosa Linn.	Diamond flower	31	75	5.7	2.6	6.7	344.4
13	Poaceae	Paspalum Vaginatum SW.	Seashore paspalum	28	66	5.0	2.3	5.9	350.0
14	Euphorbiaceae	Euphorbia hirta Linn.	Asthma plant	12	58	4.4	1	2.6	171.4
15	Leguminosae	Senna obtusifolia. L.	Java bean	19	75	5.7	1.6	4.1	211.1
16	Lamiaceae	Hyptis Suaveolens	Mint weed	69	85	6.3	5.8	14.9	690.0
17	Malvaceae	Sida Acuta	Broom weed	27	75	5.7	2.3	5.9	300.0
18	Leguminosae	Calopogonium mucunoides	Calopo	21	66	5.0	1.8	4.6	262.5
19	Azollaceae	Azolla pinata	Mosquito fern	35	66	5.0	2.9	7.4	437.5

Table 4. Distribution of herbaceous weeds at Senate Building

F=frequency RF=relative frequency D=density RD=relative density A=abundanc

S/N	Family	Scientific name	Common name	Tota	l F%	RF	D	RD	Α
1	Lamiaceae	Hyptis suaveolens	Mint weed	50	66	10.5	4.2	24.1	625.0
2	Poaceae	Paspalum vaginatum	Seashore paspalum	15	58	9.2	1.3	7.5	214.3
3	Portulacaceae	Portulaca oleraceae. L	Hog weed	10	58	9.2	0.8	4.6	142.9
1	Leguminosae	Calopogonium mucunoides	Calopo	38	83	13.2	3.2	18.4	380.0
5	Rubiaceae	Mitracarpus villosus	mitracarpus hirtus	15	66	10.5	1.3	7.5	187.5
5	Leguminosae	Senna hirtus	Hairy senna	8	50	7.9	0.7	4.0	133.3
	Asteraceae	Tridax procumbens Linn.	Tridax, coat button	31	91	14.5	2.6	14.9	281.8
	Poaceae	Panicum laxum SW.	Lax panic	20	66	10.5	1.7	9.8	250.0
	D	Dactyloctenium aegyptinum. L.	Crow foot grass	9	41	6.5	0.8	4.6	180.0
)	Poaceae	Duciyiocienium degyptinum. L.	CIOW IOOL SIUSS						
9 10	Poaceae Malvaceae	Sida Acuta	Broom weed	10	50	7.9	0.8	4.6	166.7
	Malvaceae		Broom weed		50			4.6	
0	Malvaceae	Sida Acuta	Broom weed		50			4.6 RD	
0	Malvaceae	Sida Acuta Distribution of herbaceous weeds at Fa	Broom weed aculty of University of V	eterinary 1	50 Medicine)	0.8		166.7
0 S/N	Malvaceae Family	Sida Acuta Distribution of herbaceous weeds at Fa Scientific name	Broom weed aculty of University of V Common name	eterinary I Total	50 Medicine F%	RF	0.8 D	RD	166.7 A
<u>s/n</u>	Malvaceae Family Malvaceae	Sida Acuta Distribution of herbaceous weeds at Fa Scientific name Sida acuta Paspalum vaginatum	Broom weed culty of University of V Common name Broom weed	Total	50 Medicine F% 58	RF 11.1	0.8 D 0.9	RD 8.7	166.7 A 157.1
0 5/N	Malvaceae Family Malvaceae Poaceae	Sida Acuta Distribution of herbaceous weeds at Fa Scientific name Sida acuta	Broom weed aculty of University of V Common name Broom weed Seashore paspalum	Total	50 Medicine F% 58 66	RF 11.1 12.6	0.8 D 0.9 1.4	RD 8.7 13.6	166.7 A 157.1 212.5
.0 S/N	Malvaceae Family Malvaceae Poaceae Asteraceae	Sida Acuta Distribution of herbaceous weeds at Fa Scientific name Sida acuta Paspalum vaginatum Synedrella nodiflora gaertn	Broom weed culty of University of V Common name Broom weed Seashore paspalum Starwort synedrella Mint weed	Total	50 Medicine F% 58 66 66 66	RF 11.1 12.6 12.6	0.8 D 0.9 1.4 1.3	RD 8.7 13.6 12.6	166.7 A 157.1 212.5 187.5
5/N	Malvaceae Family Malvaceae Poaceae Asteraceae Lamiaceae	Sida Acuta Distribution of herbaceous weeds at Fa Scientific name Sida acuta Paspalum vaginatum Synedrella nodiflora gaertn Hyptis suaveolens Cynodon dactylon	Broom weed aculty of University of V Common name Broom weed Seashore paspalum Starwort synedrella	Total 11 17 15 19	50 Medicine F% 58 66 66 75	RF 11.1 12.6 12.6 14.4	0.8 D 0.9 1.4 1.3 1.6	RD 8.7 13.6 12.6 15.1	166.7 A 157.1 212.5 187.5 211.1
	Malvaceae Family Malvaceae Poaceae Asteraceae Lamiaceae Poaceae	Sida Acuta Distribution of herbaceous weeds at Fa Scientific name Sida acuta Paspalum vaginatum Synedrella nodiflora gaertn Hyptis suaveolens	Broom weed culty of University of V Common name Broom weed Seashore paspalum Starwort synedrella Mint weed Bermuda grass	eterinary 1 Total 11 17 15 19 11	50 Medicine F% 58 66 66 75 58	RF 11.1 12.6 12.6 14.4 11.1	0.8 D 0.9 1.4 1.3 1.6 0.9	RD 8.7 13.6 12.6 15.1 8.7	166.7 A 157.1 212.5 187.5 211.1 157.1

Table 5. Distribution of herbaceous weeds at Faculties of Agriculture and Veterinary Medic
--

F=frequency

frequency

RF=relative

D=density

RD=relative

density

Page | 42

A=abundance

S/N	Family	Scientific name	Common name	Total	F%	RF	D	RD	Α
1	Commelinaceae	commelina erectra	White mouth	14	66	9.8	1.2	8.5	175.0
			dayflower						
2	Asteraceae	Tridax procumbens	Tridax	22	66	9.8	1.8	12.7	275.0
3	Asteraceae	Ageratum conyzoides Linn.	Billy goat weed	16	75	11.2	1.3	9.2	117.8
4	Leguminosae	Calopogonium mucunoides	Calopo	27	75	11.2	2.3	16.2	300.0
5	Poaceae	Cynodon dactylon	Bermuda grass	12	50	7.4	1	7.0	200.0
6	Malvaceae	Sida acuta	Broom weed	26	83	12.4	2.2	15.5	260.0
7	Leguminosae	Neptunia oleraceae	Water mimosa	17	66	9.8	1.4	9.9	212.5
8	Asteraceae	synedrella nodiflora	Starwort synedrrlla	15	75	1.2	1.3	9.2	166.7
9	Euphorbiaceae	Euphorbia hyssopifolia	Hyssop leaf sand mat	6	41	6.1	0.5	3.5	120.0
10	Typhaceae	Typha australis	Reed maces	14	75	11.2	1.2	8.5	155.6

Table 6. Distribution of herbaceous weeds at Faculty of Engineering and Female Hostel

Distribution of herbaceous weeds at Female Hostel

	Family	Scientific nam	e	Common nam	e Total	F%	RF	D	RD	Α
S/N	-									
1	Leguminosae	Calopogonium	mucunoides	Calopo	28	100	19.8	2.3	20.2	233.3
2	Malvaceae	Sida acuta		Broom weed	12	58	11.5	1	8.8	171.4
3	Poaceae	Paspalum va	ginatum SW.	Seashore paspalum	16	66	13.0	1.3	11.4	200.0
4	Lamiaceae	Hyptis suaveol	ens	Mint weed	31	83	16.4	2.6	22.8	310.0
5	Malvaceae	Malvastrum co	oromendelianum	False mallow	13	58	11.5	1.08	9.5	185.7
6	Leguminosae	Senna obtusifa	olia	Java bean	13	66	13.0	1.3	11.4	200.0
7	Malvaceae	Sida rhombifol	a	Wire weed	22	75	14.8	1.8	15.8	244.4
		F=frequency	RF=relative	frequency	D=density	R	D=relative		density	A=abundance

S/N	Family	Scientific name	Common name	Total	F%	RF	D	RD	Α
1	Leguminosae	Calopogonium mucunoides	Calopo	21	100	17.2	1.8	18	175.0
2	Lamiaceae	Hyptis suaveolens	Mint weed	19	75	12.9	1.6	16	211.1
3	Convolvulaceae	Ipomoea quamoclit. L.	Cypress vine	14	66	11.4	1.2	12	175.0
4	Typhaceae	Typha Australis	Reed maces	12	58	9.9	1	10	171.4
5	Leguminosae	Neptunia oleracea	Water mimosa	13	66	11.4	1.1	11	162.5
6	Asteraceae	Synedrella nodiflora	Synedrella	9	50	8.6	0.8	8	150.0
7	Asteraceae	Tridax procumbens Linn.	Tridax	12	58	9.9	1	10	171.4
8	Rubiaceae	Mitracarpus villosus	Mitracarpus	8	50	8.6	0.7	7	133.3
9	Euphorbiaceae	Euphorbia heterophylla	Spurge weed	10	58	9.9	0.8	8	142.9

Table 7. Distribution of herbaceous weeds at Faculty of Law

Distribution of herbaceous weeds at Faculty of Social Sciences

S/N	Family	Scientific name	Common name	Total	F%	RF	D	RD	Α
	. .		***	17		10.6	1.4	11.6	212.5
1	Leguminosae	Neptunia oleraceae. L.	Water mimosa	17	66	10.6	1.4	11.6	212.5
2	Poaceae	Digitaria horizontalis	Digit grass	21	75	12.06	1.8	14.9	233.3
3	Poaceae	Sporobolus pyramidalis	Cat's tail grass	10	50	8.04	0.8	14.4	166.6
4	Poaceae	Setaria megaphylla	Bristle grass	18	75	12.06	1.5	12.5	200.0
5	Lamiaceae	Hyptis suaveolens	Mint weed	22	83	13.3	1.8	14.9	220.0
6	Poaceae	Digitaria longiflora	Crab grass	14	66	10.6	1.2	9.9	175.0
7	Leguminosae	Calopogonium mucunoides	Calopo	17	66	10.6	1.4	116	212.5
8	Typhaceae	Typha australis	Reed maces	12	66	10.6	1	8.3	150.0
9	Azollaceae	Azolla pinata	Mosquito fern	14	75	12.06	1.2	9.9	155.6

F=frequency RF=relative frequency D=density RD=relative density A=abundance

DISCUSSION

The differences observed in the occurrence. population, distribution and density of the herbaceous weed species at the study locations may be attributed to variability in adaptation or tolerance to availabe environmental factors - sunlight, temperature, relative humidity, (Wyant et al 2019, Yousseff and Al-fredan 2014). Other factors such as soil water content, nutrient availability, pH, texture, seed bank and depth respectively, which are commonly edaphic factors may also alter species densities and distribution (Anjorin et al., 2021; Fried et al., 2008; Pinke et al., 2012). Also, the variations may be ascribed to variations in requirement or uptake of these edaphic factors by each specie and responses of plasticity of morphological and physiological attributes (Wulff, 1987), of the individual species, hence, influences observed in the species distribution and variations leading to the interpopulation and intrapopulation variabilities (Barbosa et al., 2013), of the herbaceous weeds found at the locations.

The generally dominant occurrence of *Hyptis* suaveolens across the study locations is associated with its characteristic to invade soils where they exist and outcompete all other plants (Anjorin *et al.*, 2021), mainly due to their allelopathic nature, seed dimorphism, prolificacy of seed production, hence, high seed bank and adaption to even adverse environmental conditions, making it an invader of tropical and sub-tropical regions of the world (Afolayan 1993).

Generally, herbaceous weeds invasion has regulated plants species diversity across tropical grasslands, (Padalia et al. 2014: Maia 2008, Schwarzkopf et al. 2014), and University of Abuja Main Campus may not be an exception, especially as most of the herbaceous weeds are capable of easy dispersal to undisturbed areas, where they may remain dormant for extended periods, until conditions become suitable (Parsons and Cuthbertson, 2001). The dominance of Hyptis suaveolens, Calopogonium mucunoides and other species with similar characteristics of withstanding varying climatic conditions, their ability to grow on a wide range of soils. (Cook et al., 2005), survival mechanisms associated with high seed germination, extended seed dormancy, enduring seed dissemination and vegetative reproduction (Rao 2006), may be attributed to their high frequency at the study locations, associated with their potential to produce viable and large quantities of seeds with ability to germinate over a wide range of soils (Kissman and Groth, 1993). In many cases, annual broadleaf species tend to be more abundant in frequently disturbed conventional tillage systems (Streit et al.,

2003), while perennial weeds (as those in the study locations), are favored by the absence of disturbance (Buhler, 1995; Nie *et al.*, 2009; Travols *et al.*, 2016), hence, their preponderance. Also, soil Fertility influences nutrient uptake, resulting in increasing growth and often, yields, as well as in modifications of weed communities (Allan *et al.*, 2015), assumed to be a key influence for the occurrence of the weeds.

The preponderance of Calopogonium mucunoides and *Tridax procumbens* at the study locations (mostly undisturbed areas), may be attributed to their relatively faster growth or proliferation rates and tolerance to allelochemicals exuded by Hyptis suaveolens, (Raizada, 2006), or other unknown attributes (compartibility or tolerance with competing species, adaptation to diverse soil and environmental conditions) of these weeds. It is also important to note that they may have had high capacity to compete for water, light and nutrients (Zimdahl, 2004), through enhanced or profuse rooting and development. The diverse distribution of herbaceous species observed at these undisturbed locations also confirms reports that weed communities tend to be more diversified in low than in high input areas (Grough et al., 2000; Suding et al., 2005; Bilalis et al., 2010).

CONCLUSION

Among the selected locations of University of Abuja, Hyptis suaveolens, Calopogonium mucunoides and Tridax procumbens were the preponderant weed speciea with varying intensities of infestation. Among the occurring families of herbaceous weeds, those belonging to Lamiaceae, Poaceae and Leguminaceae were more dominant compared to other families. Based on the results therefore, there is need for appropriate designs and implementation of weed management strategies to decrease density or noxiousness to mitigate their harmful effects. Further studies on how the species are adapting phyisiologically and morphologically to the changing climate should be given priority. This will in turn improve the survivability and productivity of agricultural and horticultural crops in droughtthreatened landscapes on the University campus.

REFERENCES

Afolayan, A.J., (1993). Germination and growth features of seeds of different sizes in *Hyptis* suaveolens (L.) Poit. Range Manag. Agrofor, 14:139–45.

- Allan, E., Bossdorf, O., Dormann, C.F., Prati, D., Gossner, M.M., Tscharntke, T., (2015). Interannual variation in land-use intensity enhances grassland multidiversity. *Proc. Natl. Acad. Sci.*, 111, 308–313.
- Anjorin T. S, Alfa, A., Jimin, A. A., (2021). Distribution and Density of Dry Season Weed Species on University of Abuja Main Campus, Abuja, Nigeria, *African journa of Agriculture and Allied Sciences*, 1(1), 21-32.
- Barbosa, L.C.A., Martins, F.T., Teixeira, R.R., Polo, M., Montanaria, R.M., (2013). Chemical variability and biological activities of volatile oils from *Hyptis suaveolens* (L) *Poit. Agriculture conspectus scientificus* (poljopri vredna znanstvena smotra), 78(1), 10.
- Bilalis, D., Panayiota, P., Aristidis, K., Sotiria, P., Anestis, K., and Aspasia, E., (2010). Weedsuppressive effects of maize–legumes intercropping in organic farming, *International Journal of Pest Management*, 56(2), 173-181.
- Booth, B.D., Murphy, S.D. and Swanton, C.I., (2018). Weeding Ecology in Natural and Agricultural systems. Wallingford, CT: CABI. Agricultural journal 7, 17-20.
- Boham, C.S., Amar, D. R., Krishna, D., Kohki, Y and Biswajeet, P., (2013). Measurements for terrestrial vegetation. Arabian journal of Geoscience 7(2), 35-42. ISBN:9781118534540 DOI:10.1002/9781118534540.
- Buhler, D. D., Robert, G. Hartzler and Frank F., (1995). Implications of weed seed bank dynamics to weed management, *Weed Science*, 45 (3), 329-336 <u>http://www.jstor.org/stable/4046027</u> (Accessed: 10-12-2016)
- Cook, B. G., Pengelly, B. C., Brown, S. D., Donnelly, J. L., Eagles, D. A., Franco, M. A., Hanson, J., Mullen, B. F., Partridge, I. J., Peters, M., Schultze-Kraft, R., (2005). Tropical forages: an interactive selection tool. Agronomy journal 1(2), 55-62.
- Fried, O. H., knox, C. L., Schmidt, S. S., (2008). Efficiency and productivity. The

measurement of productive efficiency and productivity growth. Print publication date: 2008 ISBN: 9780195183528 Publisher: Oxford University Press. (Accessed 5th December, 2021)

- Grime, J. P., García, F.C.A., Cervantes, R.M., (2016). Review of the role of weeds as component of biodiversity in agroecosystem. *Journal of ecology* 37(4), 34-56.
- Grough, L., Osrnberg C. W., Gross k. L and Collins S. L., (2000). Fertilization effects on specie density and primary productivity in herbaceous plants community. (Accessed 2nd January, 2021).
- Kent, M., (2015). Vegetation Description and Data Analysis. Hoboken, NJ. Wiley-Blackwell.ISBN: 978_0_471_49093_7, page 448. (Accessed 20th October, 2021).
- Maia, F. C., Manoel, D. S. M., Bekker, R. M., (2008). Revista Brasileir de sementes. *Journal of seed science 30(2), pp. 100-110.*
- Maszura, C.M., Karim, S. M.R., Norhafizal, M.Z., Kayat, F. and Artifullah, M., (2018).
 Distribution, Density, Abundance of Parthinium weed (Parthenium hysterophorus L.) at Kuala Muda Malaysia. International Journal of Agronomy, vol. 2018, Article ID 1046214, 8 pages.
- Niel, L. M., Mohler, L. and Staver, C. P., (2009). Ecological management of agricultural weeds. Cambridge University Press, New York.ISBN:9780511541810. DOI:https://doi.org/10.1017/CBO97805115 41810,Vol 77, No 3.
- Padalia, H., Vivek. S., P. S. K., (2014). Environmental monitoring and assessment. Journal of ecology information 187 (4), 1-14. Parsons, W. T., Cuthbertson, E. G., (2001). Noxious weeds of Australia, (Ed. 2). Collingwood Australia: CSIRO publishing. (Accessed 27th October, 2021).
- Parsons, W. T., Cuthbertson, E. G., (2001). Noxious weeds of Australia, (Ed. 2). Collingwood Australia: CSIRO publishing. Xiii +698 pp. (Accessed 27th October, 2021).

FUDMA Journal of Agriculture and Agricultural Technology, Volume 8 Number 2, December 2022, Pp 33-47

Page | 46

- Pinke, G., Péter, K., Bálint, C., Zoltán, B. D., (2012) When herbicides don't really matter: Weed species composition of oil pumpkin (*Cucurbita pepo L.*) fields in Hungary, *Crop Protection*, 10.1016/j.cropro.2017.06.018, 110, (236-244). (Downloaded 6th November, 2021).
- Rao. V. S., (2006). Weed Research Methodology— Field Experimentation," Principles of Weed Science (second edition), Oxford and IBH Publishing Co. Pvt. Ltd, 2000, pp. 497-498.
- Raizada, P., (2006). Effect of invasion by *Hyptis* suaveolens on plant diversity. Journal of plant ecology, Vol. 1:751-769.
- Schwarzkopf, L., Abom, R., Hackim, J., (2014). Why do lizards avoid weeds? *Journal of biological invasion*, 16: (4), 935-947.
- Solomon, E.P., Berg, L.R., Martin, D.W., (2004). Biology study guide. Brooks/Cole Thomson Learning. ISBN978-0-534-49547-3. (Accessed 2nd January, 2021).
- Streit, P., Nautiyal, B.P., Anthwal, A., Sharma, A. and Bhatt, A.B., (2003). Phytosociological investigation and life form pattern of grazing lands under pine canopy in temperate zone, Northwest Himalaya. *India Research Journal of Botany 4: 55-69.*
- Suding, S. L., Katharine, N., Collins, O., and Steven, P., (2005). Functional- and abundancebased mechanisms explain diversity loss due to N fertilization https://doi.org/10.1073/pnas.0408648102. (Downloaded 12th November, 2021).

- TNAU (Tamil Nadu Agricultural University, Coibatore), India, (2016). (https:// agritech.tnau.ac.in >agriculture). (Downloaded 3rd December 2021).
- Travlos, I., Cheimona, N., Angelic, C., Panagiotou, E., Tzanidaki, A., Dronza, C., (2016). Effect of different types of fertilizer on weed floral in processed tomato crop. Agriculture and Agricultural Science Procedia 10, 26 – 31.
- Wulff, R. D., (1987). Effects of irradiance, temperature and water status on growth and photosynthetic capacity of *Hyptis* suaveolens. Canadian journal of botany, 65(12) 2501. (Downloaded 5th September, 2021).
- Wyant, J.G., Alig, R.I. and Bechtold, W.A., (2019). Physiographic position, disturbance and species composition in North Carolina coastal plain forests. *Forest Ecology and Management*, 41(1-2):1-19.
- Youssef, A.M. and Al-Fredan, M.A., (2014). Community composition of major vegetations in the coastal area of Al-Uqair, Saudi Arabia in response to ecological variations. *Journal of Biological Sciences*, 8:713-721.
- Zimdahl, R. L., (2004). Weed-Crop competition: A review, 2nd ed. Black well publishing, Ames. IA. ISBN: 978-0-470-29022-4 Vol 79, No 4. pp 449-461. (Accessed 2nd January, 2021).